18 research outputs found

    Recherche de structure dans un graphe aléatoire : modèles à espace latent

    Get PDF
    .This thesis addresses the clustering of the nodes of a graph, in the framework of randommodels with latent variables. To each node i is allocated an unobserved (latent) variable Zi and the probability of nodes i and j being connected depends conditionally on Zi and Zj . Unlike Erdos-Renyi's model, connections are not independent identically distributed; the latent variables rule the connection distribution of the nodes. These models are thus heterogeneous and their structure is fully described by the latent variables and their distribution. Hence we aim at infering them from the graph, which the only observed data.In both original works of this thesis, we propose consistent inference methods with a computational cost no more than linear with respect to the number of nodes or edges, so that large graphs can be processed in a reasonable time. They both are based on a study of the distribution of the degrees, which are normalized in a convenient way for the model.The first work deals with the Stochastic Blockmodel. We show the consistency of an unsupervised classiffcation algorithm using concentration inequalities. We deduce from it a parametric estimation method, a model selection method for the number of latent classes, and a clustering test (testing whether there is one cluster or more), which are all proved to be consistent. In the second work, the latent variables are positions in the ℝd space, having a density f. The connection probability depends on the distance between the node positions. The clusters are defined as connected components of some level set of f. The goal is to estimate the number of such clusters from the observed graph only. We estimate the density at the latent positions of the nodes with their degree, which allows to establish a link between clusters and connected components of some subgraphs of the observed graph, obtained by removing low degree nodes. In particular, we thus derive an estimator of the cluster number and we also show the consistency in some sense.Cette thèse aborde le problème de la recherche d'une structure (ou clustering) dans lesnoeuds d'un graphe. Dans le cadre des modèles aléatoires à variables latentes, on attribue à chaque noeud i une variable aléatoire non observée (latente) Zi, et la probabilité de connexion des noeuds i et j dépend conditionnellement de Zi et Zj . Contrairement au modèle d'Erdos-Rényi, les connexions ne sont pas indépendantes identiquement distribuées; les variables latentes régissent la loi des connexions des noeuds. Ces modèles sont donc hétérogènes, et leur structure est décrite par les variables latentes et leur loi; ce pourquoi on s'attache à en faire l'inférence à partir du graphe, seule variable observée.La volonté commune des deux travaux originaux de cette thèse est de proposer des méthodes d'inférence de ces modèles, consistentes et de complexité algorithmique au plus linéaire en le nombre de noeuds ou d'arêtes, de sorte à pouvoir traiter de grands graphes en temps raisonnable. Ils sont aussi tous deux fondés sur une étude fine de la distribution des degrés, normalisés de façon convenable selon le modèle.Le premier travail concerne le Stochastic Blockmodel. Nous y montrons la consistence d'un algorithme de classiffcation non supervisée à l'aide d'inégalités de concentration. Nous en déduisons une méthode d'estimation des paramètres, de sélection de modèles pour le nombre de classes latentes, et un test de la présence d'une ou plusieurs classes latentes (absence ou présence de clustering), et nous montrons leur consistence.Dans le deuxième travail, les variables latentes sont des positions dans l'espace ℝd, admettant une densité f, et la probabilité de connexion dépend de la distance entre les positions des noeuds. Les clusters sont définis comme les composantes connexes de l'ensemble de niveau t > 0 fixé de f, et l'objectif est d'en estimer le nombre à partir du graphe. Nous estimons la densité en les positions latentes des noeuds grâce à leur degré, ce qui permet d'établir une correspondance entre les clusters et les composantes connexes de certains sous-graphes du graphe observé, obtenus en retirant les nœuds de faible degré. En particulier, nous en déduisons un estimateur du nombre de clusters et montrons saconsistence en un certain sen

    Classification and estimation in the Stochastic Blockmodel based on the empirical degrees

    Get PDF
    International audienceThe Stochastic Blockmodel [16] is a mixture model for heterogeneous network data. Unlike the usual statistical framework, new nodes give additional information about the previous ones in this model. Thereby the distribution of the degrees concentrates in points conditionally on the node class. We show under a mild assumption that classification, estimation and model selection can actually be achieved with no more than the empirical degree data. We provide an algorithm able to process very large networks and consistent estimators based on it. In particular, we prove a bound of the probability of misclassification of at least one node, including when the number of classes grows

    Généralisation de l'algorithme Largest Gaps pour le modèle des blocs latents non-paramétrique

    Get PDF
    National audienceThe latent block model assumes there exists a distribution for each crossing between an object cluster and a variable cluster of a data table ; the cells are supposed to be independent conditionally to the choice of these clusters. To estimate the model parameters, most of algorithms are time consuming. Brault and Channarond (2016) proposed to adapt the Largest Gaps algorithm which consists in using the margins. They thus obtained a procedure which estimates all the model parameters consistently but requires a large number of observations. In this talk, we will extend the procedure to the case of any distribution having a second order moment by using an EM algorithm estimation.Le modèle des blocs latents dénit une loi pour chaque croisement de classe d'objets et de classe de variables d'un tableau de données ; les cases sont supposées indé-pendantes conditionnellement aux blocs formés. Pour estimer les paramètres, la plupart des algorithmes sont très coûteux en temps de calcul. Brault et Channarond (2016) ont proposé d'adapter l'algorithme Largest Gaps, qui utilise uniquement les marginales, au modèle des blocs latents binaire et ont obtenu une procédure estimant tous les para-mètres du modèle de façon consistante mais nécessitant un grand nombre d'observations. Dans cet exposé, nous étendons la procédure au cas de toute loi ayant un moment d'ordre deux en l'associant à une estimation des marginales par l'algorithme EM

    Adaptive nonparametric estimation of a component density in a two-class mixture model

    Full text link
    A two-class mixture model, where the density of one of the components is known, is considered. We address the issue of the nonparametric adaptive estimation of the unknown probability density of the second component. We propose a randomly weighted kernel estimator with a fully data-driven bandwidth selection method, in the spirit of the Goldenshluger and Lepski method. An oracle-type inequality for the pointwise quadratic risk is derived as well as convergence rates over Holder smoothness classes. The theoretical results are illustrated by numerical simulations

    On the Estimation of Latent Distances Using Graph Distances

    Get PDF
    We are given the adjacency matrix of a geometric graph and the task of recovering the latent positions. We study one of the most popular approaches which consists in using the graph distances and derive error bounds under various assumptions on the link function. In the simplest case where the link function is an indicator function, the bound is (nearly) optimal as it (nearly) matches an information lower bound

    Clustering in a random graph : models with latent space

    No full text
    Cette thèse aborde le problème de la recherche d'une structure (ou clustering) dans lesnoeuds d'un graphe. Dans le cadre des modèles aléatoires à variables latentes, on attribue à chaque noeud i une variable aléatoire non observée (latente) Zi, et la probabilité de connexion des noeuds i et j dépend conditionnellement de Zi et Zj . Contrairement au modèle d'Erdos-Rényi, les connexions ne sont pas indépendantes identiquement distribuées; les variables latentes régissent la loi des connexions des noeuds. Ces modèles sont donc hétérogènes, et leur structure est décrite par les variables latentes et leur loi; ce pourquoi on s'attache à en faire l'inférence à partir du graphe, seule variable observée.La volonté commune des deux travaux originaux de cette thèse est de proposer des méthodes d'inférence de ces modèles, consistentes et de complexité algorithmique au plus linéaire en le nombre de noeuds ou d'arêtes, de sorte à pouvoir traiter de grands graphes en temps raisonnable. Ils sont aussi tous deux fondés sur une étude fine de la distribution des degrés, normalisés de façon convenable selon le modèle.Le premier travail concerne le Stochastic Blockmodel. Nous y montrons la consistence d'un algorithme de classiffcation non supervisée à l'aide d'inégalités de concentration. Nous en déduisons une méthode d'estimation des paramètres, de sélection de modèles pour le nombre de classes latentes, et un test de la présence d'une ou plusieurs classes latentes (absence ou présence de clustering), et nous montrons leur consistence.Dans le deuxième travail, les variables latentes sont des positions dans l'espace ℝd, admettant une densité f, et la probabilité de connexion dépend de la distance entre les positions des noeuds. Les clusters sont définis comme les composantes connexes de l'ensemble de niveau t > 0 fixé de f, et l'objectif est d'en estimer le nombre à partir du graphe. Nous estimons la densité en les positions latentes des noeuds grâce à leur degré, ce qui permet d'établir une correspondance entre les clusters et les composantes connexes de certains sous-graphes du graphe observé, obtenus en retirant les nœuds de faible degré. En particulier, nous en déduisons un estimateur du nombre de clusters et montrons saconsistence en un certain sens.This thesis addresses the clustering of the nodes of a graph, in the framework of randommodels with latent variables. To each node i is allocated an unobserved (latent) variable Zi and the probability of nodes i and j being connected depends conditionally on Zi and Zj . Unlike Erdos-Renyi's model, connections are not independent identically distributed; the latent variables rule the connection distribution of the nodes. These models are thus heterogeneous and their structure is fully described by the latent variables and their distribution. Hence we aim at infering them from the graph, which the only observed data.In both original works of this thesis, we propose consistent inference methods with a computational cost no more than linear with respect to the number of nodes or edges, so that large graphs can be processed in a reasonable time. They both are based on a study of the distribution of the degrees, which are normalized in a convenient way for the model.The first work deals with the Stochastic Blockmodel. We show the consistency of an unsupervised classiffcation algorithm using concentration inequalities. We deduce from it a parametric estimation method, a model selection method for the number of latent classes, and a clustering test (testing whether there is one cluster or more), which are all proved to be consistent. In the second work, the latent variables are positions in the ℝd space, having a density f. The connection probability depends on the distance between the node positions. The clusters are defined as connected components of some level set of f. The goal is to estimate the number of such clusters from the observed graph only. We estimate the density at the latent positions of the nodes with their degree, which allows to establish a link between clusters and connected components of some subgraphs of the observed graph, obtained by removing low degree nodes. In particular, we thus derive an estimator of the cluster number and we also show the consistency in some sense

    Algorithme rapide et consistant pour le modèle des blocs latents

    No full text
    International audienceThe latent block model is used to simultaneously rank the rows and columns of a matrix to reveal a block structure. The algorithms used for estimation are often time consuming. However, recent work shows that the log-likelihood ratios are equivalent under the complete and observed (with unknown labels) models and the groups posterior distribution to converge as the size of the data increases to a Dirac mass located at the actual groups configuration. Based on these observations, the algorithm Largest Gaps is proposed in this paper to perform clustering using only the marginals of the matrix, when the number of blocks is very small with respect to the size of the whole matrix in the case of binary data. In addition, a model selection method is incorporated with a proof of its consistency. Thus, this paper shows that studying simplistic configurations (few blocks compared to the size of the matrix or very contrasting blocks) with complex algorithms is useless since the marginals already give very good parameter and classification estimates.Le modèle des blocs latents est utilisé pour classer simultanément les lignes et les colonnes d'une matrice afin de révéler une structure en blocs. Les algorithmes utilisés pour l'estimation prennent souvent beaucoup de temps. Cependant, des travaux récents montrent que les rapports de log-vraisemblance sont équivalents sous les modèles complet et observé (avec des étiquettes inconnues) et que la distribution postérieure des groupes converge à mesure que la taille des données augmente vers une masse de Dirac située au niveau de la configuration réelle des groupes. Sur la base de ces observations, l'algorithme Largest Gaps est proposé dans cet article pour effectuer le regroupement en utilisant uniquement les marginales de la matrice, lorsque le nombre de blocs est très petit par rapport à la taille de la matrice entière dans le cas de données binaires. En outre, une méthode de sélection de modèle est incorporée avec une preuve de sa consistance. Ainsi, cet article montre que l'étude de configurations simplistes (peu de blocs par rapport à la taille de la matrice ou des blocs très contrastés) avec des algorithmes complexes est inutile puisque les marginales donnent déjà de très bonnes estimations des paramètres et de la classification

    Algorithme rapide et consistant pour le modèle des blocs latents

    Get PDF
    In this paper, the algorithm Largest Gaps is introduced, for simultaneously clustering both rows and columns of a matrix to form homogeneous blocks. The definition of clustering is model-based: clusters and data are generated under the Latent Block Model. In comparison with algorithms designed for this model, the major advantage of the Largest Gaps algorithm is to cluster using only some marginals of the matrix, the size of which is much smaller than the whole matrix. The procedure is linear with respect to the number of entries and thus much faster than the classical algorithms. It simultaneously selects the number of classes as well, and the estimation of the parameters is then made very easily once the classification is obtained. Moreover, the paper proves the procedure to be consistent under the LBM, and it illustrates the statistical performance with some numerical experiments
    corecore