thesis

Recherche de structure dans un graphe aléatoire : modèles à espace latent

Abstract

.This thesis addresses the clustering of the nodes of a graph, in the framework of randommodels with latent variables. To each node i is allocated an unobserved (latent) variable Zi and the probability of nodes i and j being connected depends conditionally on Zi and Zj . Unlike Erdos-Renyi's model, connections are not independent identically distributed; the latent variables rule the connection distribution of the nodes. These models are thus heterogeneous and their structure is fully described by the latent variables and their distribution. Hence we aim at infering them from the graph, which the only observed data.In both original works of this thesis, we propose consistent inference methods with a computational cost no more than linear with respect to the number of nodes or edges, so that large graphs can be processed in a reasonable time. They both are based on a study of the distribution of the degrees, which are normalized in a convenient way for the model.The first work deals with the Stochastic Blockmodel. We show the consistency of an unsupervised classiffcation algorithm using concentration inequalities. We deduce from it a parametric estimation method, a model selection method for the number of latent classes, and a clustering test (testing whether there is one cluster or more), which are all proved to be consistent. In the second work, the latent variables are positions in the ℝd space, having a density f. The connection probability depends on the distance between the node positions. The clusters are defined as connected components of some level set of f. The goal is to estimate the number of such clusters from the observed graph only. We estimate the density at the latent positions of the nodes with their degree, which allows to establish a link between clusters and connected components of some subgraphs of the observed graph, obtained by removing low degree nodes. In particular, we thus derive an estimator of the cluster number and we also show the consistency in some sense.Cette thèse aborde le problème de la recherche d'une structure (ou clustering) dans lesnoeuds d'un graphe. Dans le cadre des modèles aléatoires à variables latentes, on attribue à chaque noeud i une variable aléatoire non observée (latente) Zi, et la probabilité de connexion des noeuds i et j dépend conditionnellement de Zi et Zj . Contrairement au modèle d'Erdos-Rényi, les connexions ne sont pas indépendantes identiquement distribuées; les variables latentes régissent la loi des connexions des noeuds. Ces modèles sont donc hétérogènes, et leur structure est décrite par les variables latentes et leur loi; ce pourquoi on s'attache à en faire l'inférence à partir du graphe, seule variable observée.La volonté commune des deux travaux originaux de cette thèse est de proposer des méthodes d'inférence de ces modèles, consistentes et de complexité algorithmique au plus linéaire en le nombre de noeuds ou d'arêtes, de sorte à pouvoir traiter de grands graphes en temps raisonnable. Ils sont aussi tous deux fondés sur une étude fine de la distribution des degrés, normalisés de façon convenable selon le modèle.Le premier travail concerne le Stochastic Blockmodel. Nous y montrons la consistence d'un algorithme de classiffcation non supervisée à l'aide d'inégalités de concentration. Nous en déduisons une méthode d'estimation des paramètres, de sélection de modèles pour le nombre de classes latentes, et un test de la présence d'une ou plusieurs classes latentes (absence ou présence de clustering), et nous montrons leur consistence.Dans le deuxième travail, les variables latentes sont des positions dans l'espace ℝd, admettant une densité f, et la probabilité de connexion dépend de la distance entre les positions des noeuds. Les clusters sont définis comme les composantes connexes de l'ensemble de niveau t > 0 fixé de f, et l'objectif est d'en estimer le nombre à partir du graphe. Nous estimons la densité en les positions latentes des noeuds grâce à leur degré, ce qui permet d'établir une correspondance entre les clusters et les composantes connexes de certains sous-graphes du graphe observé, obtenus en retirant les nœuds de faible degré. En particulier, nous en déduisons un estimateur du nombre de clusters et montrons saconsistence en un certain sen

    Similar works