156 research outputs found

    Investigations of negative and positive cesium ion species

    Get PDF
    A direct test is provided of the hypothesis of negative ion creation at the anode or collector of a diode operating under conditions simulating a cesium thermionic converter. The experimental technique involves using direct ion sampling through the collector electrode with mass analysis using a quadrupole mass analyzer. Similar measurements are undertaken on positive ions extracted through the emitter electrode. Measurements were made on a variety of gases including pure cesium, helium-cesium mixtures and cesium-hydrogen as well as cesium-xenon mixtures. The gas additive was used primarily to aid in understanding the negative ion formation processes. Measurements were conducted using emitter (cathode) temperatures up to about 1000 F. The major negative ion identified through the collector was Cs(-) with minor negative ion peaks tentatively identified as H(-), H2(-), H3(-), He(-) and a mass 66. Positive ions detected were believed to be Cs(+), Cs2(+) and Cs3(+)

    Seasonal variation of the 11 year solar cycle effect on the middle atmosphere: Role of the quasi biennial oscillation

    Get PDF
    Before the introduction of the Quasi Biennial Oscillation (Q.B.O.) in the study of the solar atmosphere relationship by Labitzke (1987) and Labitzke and Van Loon (1988), the only region of the atmosphere where an effect of a change in solar activity was generally admitted was the mesosphere. The response of the mesosphere, in phase with the solar activity, was found to be about one order of magnitude above model expectancy (around 10 to 20 Kelvin). It was observed independently of the season and maximized around 70 km (Chanin et al. 1987). However, from the same study, it was shown that the response of the stratosphere of opposite sign, clearly seen during winter and autumn, was at the threshold of detection in spring and summer. In the stratosphere, it was shown later that the separation of the data taking into account the sign of the Q.B.O. amplifies the negative correlation of the stratospheric temperature with solar activity in winter; it then becomes more significantly negative for the East phase of the Q.B.O. than when the data are all mixed (Labitzke and Chanin 1988). The studies of the seasonal response of the atmosphere to solar effect is crucial to understand the possible mechanism responsible of such a solar activity Q.B.O. relationship, knowing that the global dynamic circulation is quite different according to the seasons. The question is examined as to whether such separation of the data according to the phase of the Q.B.O. has any impact on the solar response of the middle atmosphere for seasons other than winter

    Global trends

    Get PDF
    Measuring trends in ozone, and most other geophysical variables, requires that a small systematic change with time be determined from signals that have large periodic and aperiodic variations. Their time scales range from the day-to-day changes due to atmospheric motions through seasonal and annual variations to 11 year cycles resulting from changes in the sun UV output. Because of the magnitude of all of these variations is not well known and highly variable, it is necessary to measure over more than one period of the variations to remove their effects. This means that at least 2 or more times the 11 year sunspot cycle. Thus, the first requirement is for a long term data record. The second related requirement is that the record be consistent. A third requirement is for reasonable global sampling, to ensure that the effects are representative of the entire Earth. The various observational methods relevant to trend detection are reviewed to characterize their quality and time and space coverage. Available data are then examined for long term trends or recent changes in ozone total content and vertical distribution, as well as related parameters such as stratospheric temperature, source gases and aerosols

    Excerpts from the paper: Research Status and Recommendation from the Alaska Workshop on Gravity Waves and Turbulence in the Middle Atmosphere, part 1.3A

    Get PDF
    Internal gravity waves are disturbances whose intrinsic frequencies k(c - u) are smaller than the Brunt-Vaisala frequency (N). Their importance arises because: they are the major components of the total flow and temperature variability fields of the mesosphere (i.e., shears and lapse rates) and hence constitute the likely sources of turbulence; and they are associated with fluxes of momentum that communicate stresses over large distances. For example, gravity waves exert a drag on the flow in the upper mesosphere. However, in order for gravity waves to exert a net drag on the atmosphere, they must be attenuated. There are two general types of processes that seek to attenuate gravity waves: dissipation and saturation. Dissipation is any process that is effective independent of the wave amplitude, while saturation occurs when certain wave amplitude conditions are met. Radiative damping is an example of dissipation, while convective overturning is an example of saturation. The two processes are not mutually exclusive

    Superconductivity in a Mesoscopic Double Square Loop: Effect of Imperfections

    Full text link
    We have generalized the network approach to include the effects of short-range imperfections in order to analyze recent experiments on mesoscopic superconducting double loops. The presence of weakly scattering imperfections causes gaps in the phase boundary B(T)B(T) or Φ(T)\Phi(T) for certain intervals of TT, which depend on the magnetic flux penetrating each loop. This is accompanied by a critical temperature Tc(Φ)T_c(\Phi), showing a smooth transition between symmetric and antisymmetric states. When the scattering strength of imperfections increases beyond a certain limit, gaps in the phase boundary Tc(B)T_c(B) or Tc(Φ)T_c(\Phi) appear for values of magnetic flux lying in intervals around half-integer Φ0=hc/2e\Phi_0=hc/2e. The critical temperature corresponding to these values of magnetic flux is determined mainly by imperfections in the central branch. The calculated phase boundary is in good agreement with experiment.Comment: 9 pages, 6 figure

    Small Water Bodies in Great Britain and Ireland: Ecosystem function, human-generated degradation, and options for restorative action

    Get PDF
    © 2018 Small, 1st and 2nd-order, headwater streams and ponds play essential roles in providing natural flood control, trapping sediments and contaminants, retaining nutrients, and maintaining biological diversity, which extend into downstream reaches, lakes and estuaries. However, the large geographic extent and high connectivity of these small water bodies with the surrounding terrestrial ecosystem makes them particularly vulnerable to growing land-use pressures and environmental change. The greatest pressure on the physical processes in these waters has been their extension and modification for agricultural and forestry drainage, resulting in highly modified discharge and temperature regimes that have implications for flood and drought control further downstream. The extensive length of the small stream network exposes rivers to a wide range of inputs, including nutrients, pesticides, heavy metals, sediment and emerging contaminants. Small water bodies have also been affected by invasions of non-native species, which along with the physical and chemical pressures, have affected most groups of organisms with consequent implications for the wider biodiversity within the catchment. Reducing the impacts and restoring the natural ecosystem function of these water bodies requires a three-tiered approach based on: restoration of channel hydromorphological dynamics; restoration and management of the riparian zone; and management of activities in the wider catchment that have both point-source and diffuse impacts. Such activities are expensive and so emphasis must be placed on integrated programmes that provide multiple benefits. Practical options need to be promoted through legislative regulation, financial incentives, markets for resource services and voluntary codes and actions

    Using Long-Term Volunteer Records to Examine Dormouse (Muscardinusavellanarius) Nestbox Selection.

    Get PDF
    Within ecology, there are unanswered questions about species-habitat interactions, which could potentially be resolved by a pragmatic analysis of a long-term volunteer-collected dataset. Here, we analysed 18 years of volunteer-collected data from a UK dormouse nestbox monitoring programme to determine the influence of habitat variables on nestbox choice by common dormice (Muscardinusavellanarius). We measured a range of habitat variables in a coppiced woodland in Gloucestershire, UK, and analysed these in relation to dormouse nestbox occupancy records (by dormice, other small mammals, and birds) collected by volunteers. While some characteristics of the woodland had changed over 18 years, simple transformation of the data and interpretation of the results indicated that the dataset was informative. Using stepwise regressions, multiple environmental and ecological factors were found to determine nestbox selection. Distance from the edge of the wood was the most influential (this did not change over 18 years), with boxes in the woodland interior being selected preferentially. There was a significant negative relationship with the presence of ferns (indicative of damp shady conditions). The presence of oak (a long-lived species), and the clumped structural complexity of the canopy were also important factors in the final model. There was no evidence of competition between dormice and birds or other mammals. The results provide greater understanding of artificial dormouse nest-site requirements and indicate that, in terms of habitat selection, long-term volunteer-collected datasets contribute usefully to understanding the requirements of species with an important conservation status
    corecore