93 research outputs found

    Heparin-Mimicking Polymer Modified Polyethersulfone Membranes - A Mini Review

    Get PDF
    Recent studies on the modification of polyethersulfone (PES) membranes using heparin-mimicking polymers are reviewed. The general conception of heparin-mimicking polymersis defined as the syntheticpolymers (including the biopolymer derivates and synthetic sulfated artificial polymers) with similar biologically functionalities as heparin, such as the anticoagulant, growth factor binding, and also disease mediation. In the review, heparin-mimicking polymers is briefly reviewed; then heparin-mimicking polymer modified PES membranes, including blended, coated, and grafted membranes are discussed respectively

    Research on a simulation scheme of penetration overload signal

    Get PDF
    In this paper, the types of penetrating collision overload signals are analyzed, and a detection device for simulating the signal of the penetration process is designed in combination with engineering practice. The device uses asimulated signal generation circuit to simulate the overload signal of the projectile actually hitting the target during the penetration process. The Pspice simulation software is used to simulate the voltage overload of the simulated overload signal, and the feasibility and stability of the signal generation are verified by the prototype test. The simulation signal proposed by the design scheme can be used to simulate the penetration overload signals for different initial speeds and different targets, and it has certain guiding significance for the pre-design simulation test of engineering projects

    Research of concrete cracking propagation based on information entropy evolution

    Get PDF
    The distribution state evolution of concrete cracking evolution energy has been discussed in which with dissipative system characteristics is considered, and combined the theory of information entropy with energy method. The function of entropy evolution change for in different stage of crack stable and unstable propagations evolution is established. The element damage extent formula is deduced, which can be applied to judge the stage of crack. Finally, the cracking process of double span continuous beam is simulated by Midas/FEA to compare with other literature. The result shows that the strain energy entropy function proposed can is be capable of well describing the evolution law of concrete cracking evolution

    Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst

    Full text link
    The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to 150 keV\rm 150~keV. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with B∼1013 GB\rm \sim 10^{13}~G, D∼6 kpcD\rm \sim 6~kpc and peak luminosity of >1039 erg s−1\rm >10^{39}~erg~s^{-1} which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.Comment: publishe

    A new way for mapping texture onto 3D Face model

    No full text
    Adding texture to an object is extremely important for the enhancement of the 3D model\u27s visual realism. This thesis presents a new method for mapping texture onto a 3D face model. The complete architecture of the new method is described. In this thesis, there are two main parts, one is 3D mesh modifying and the other is image processing. In 3D mesh modifying part, we use one face obj file as the 3D mesh file. Based on the coordinates and indices of that file, a 3D face wireframe can be displayed on screen by using OpenGL API. The most common method for mapping texture onto 3D mesh is to do mesh parametrization. To achieve this goal, a perspective-projection method is used to map 3D mesh to a 2D plane. To improve the degree of the accuracy, we separates the 3D mesh into three pieces based on three different view positions from left to right. In image processing part, we extracted the face information from the green background images by using image segmentation. Because of the three face images from different view positions, so they have different light illumination. In this thesis, a button controller was made to control the light illumination of three parts separately. The image blending method was used to reduce the texture seam between two different parts of the mesh.The proposed method in this thesis is new way to add detail to a 3D model. It provides a valid texture mapping, also satisfies the man-machine interaction exactly. Even if the images are taken under the different illumination, users can use keyboard to change its illumination for color matching. This new way provides a new method to parametrize and modify the mesh so as to be used for texture mapping

    Carbon Nanomaterials for Fibers, Photonics and Composites

    No full text
    This thesis investigates various carbon nanomaterials from the basic synthesis to the characterizations and applications in fibers, photonics and composites. The carbon nanomaterials we studied include graphene, graphene oxide, graphene nanoribbons, functionalized graphene nanoribbons, graphene oxide nanoribbons, graphene quantum dots and carbon nanotubes. With all these chemical approaches, these carbon nanomaterials’ mechanical, electrical, photonic and gas barrier properties were carefully studied and demonstrated

    Social Relationship Labeling Based on Multimodal Behaviors and Social Interactions

    No full text
    • …
    corecore