130 research outputs found

    Unique temperature dependence of selectively liquid-crystal-filled photonic crystal fibers

    Get PDF
    We demonstrate a unique temperature-dependent characteristic of the selectively liquid-crystal-filled photonic crystal fiber, which is realized by a selectively infiltrating liquid crystal into a single air hole located at the second ring near the core of the PCF. Three-resonance dips are observed in the transmission spectrum. Theoretical and experimental investigations reveal that the three-resonance dips all result from the coupling between the LP01 core mode and the rod modes, i.e., LP03 and LP51. Then, we find that the dip shift induced by temperature shows good agreements with the thermo-optic performance of the LC employed. Furthermore, the dips shift greatly with changes in temperature, providing a method to achieve temperature measurement in such a compact structure

    Automatic arc discharge-induced helical long period fiber gratings and its sensing applications

    Get PDF
    We experimentally demonstrate an automatic arc discharge technology for inscribing high-quality helically twisted long period fiber gratings (H-LPFGs) with greatly improved inscription efficiency for single mode fibers. The proposed technology has been developed by implementing an embedded program in a commercial fusion splicer, which employs an ultraprecision motorized translation stage while the tensioning mass required by conventional inscribing technology is eliminated. More significantly, the arc-induced H-LPFGs have been reported to have potential usage as sensors in temperature, refractive index, twist stress, and strain

    Solid optical fiber with tunable bandgaps based on curable polymer infiltrated photonic crystal fiber

    Get PDF
    We demonstrated the realization and characterization of a solid photonic bandgap fiber (SPBF) with a compact size of about 10 mm and a high wavelength sensitivity of up to -4.034 nm/°C by means of fully infiltrating an ultraviolet curable polymer with a high refractive index of 1.515 into air holes of a photonic crystal fiber (PCF). To the best of our knowledge, it was the first time that the SPBF with tunable bandgaps was fabricated in the conventional index-guiding PCF. Compared with conventional fluid filled PBFs, the proposed SPBF can be stable to temperature and other environmental effects and maintain a large extinction ratio of more than 30 dB within a broad wavelength. The splicing between the SPBF and single mode fibers has been solved. Moreover, it is observed that the bandwidth of bandgap (G2) gradually broadens with the increase in temperature

    Aesthetic Enhancement via Color Area and Location Awareness

    Get PDF
    Choosing a suitable color palette can typically improve image aesthetic, where a naive way is choosing harmonious colors from some pre-defined color combinations in color wheels. However, color palettes only consider the usage of color types without specifying their amount in an image. Also, it is still challenging to automatically assign individual palette colors to suitable image regions for maximizing image aesthetic quality. Motivated by these, we propose to construct a contribution-aware color palette from images with high aesthetic quality, enabling color transfer by matching the coloring and regional characteristics of an input image. We hence exploit public image datasets, extracting color composition and embedded color contribution features from aesthetic images to generate our proposed color palettes. We consider both image area ratio and image location as the color contribution features to extract. We have conducted quantitative experiments to demonstrate that our method outperforms existing methods through SSIM (Structural SIMilarity) and PSNR (Peak Signal to Noise Ratio) for objective image quality measurement and no-reference image assessment (NIMA) for image aesthetic scoring

    Undamaged measurement of the sub-micron diaphragm and gap by tri-beam interference

    Get PDF
    A simple, high-accuracy and non-destructive method for the measurement of diaphragm thickness and microgap width based on modulated tri-beam interference is demonstrated. With this method, a theoretical estimation error less than 0.5% for a diaphragm thickness of ~1 μm is achievable. Several fiber-tip air bubbles with different diaphragm thicknesses (6.25, 5.0, 2.5 and 1.25 μm) were fabricated to verify our proposed measurement method. Furthermore, an improved technique was introduced by immersing the measured object into a liquid environment to simplify a four-beam interference into tri-beam one. By applying this improved technique, the diaphragm thickness of a fabricated in-fiber rectangular air bubble is measured to be about 1.47 μm, and the averaged microgap width of a standard silica capillary is measured to be about 10.07 μm, giving a corresponding measurement error only 1.27% compared with actual scanning electron microscope (SEM) results

    Design and Fabrication of High Activity Retention Al-Based Composite Powders for Mild Hydrogen Generation.

    Get PDF
    Al-Bi-Sn-Cu composite powders for hydrogen generation were designed from the calculated phase diagram and prepared by the gas atomization process. The morphologies and structures of the composite powders were investigated using X-ray diffraction (XRD) and a scanning electron microscope (SEM) equipped with energy-dispersive X-ray (EDX) spectroscopy, and the results indicate that the Cu additive enhanced the phase separation between the Al-rich phase and the (Bi, Sn)-rich phase. The hydrogen generation performances were investigated by reacting the materials with distilled water. The Al-Bi-Sn-Cu powders reveal a stable hydrogen generation rate, and the Al-10Bi-7Sn-3Cu (wt%) powder exhibits the best hydrogen generation performance in 50 °C distilled water which reaches 856 mL/g in 800 min. In addition, the antioxidation properties of the powders were also studied. The Al-10Bi-7Sn-3Cu (wt%) powder has a good resistance to oxidation and moisture, which shows great potential for being the hydrogen source for fuel cell applications
    • …
    corecore