30 research outputs found

    The Joint IOC (of UNESCO) and WMO collaborative effort for met-ocean services

    Get PDF
    The Joint Committee for Oceanography and Marine Meteorology (JCOMM), a joint technical commission of IOC of UNESCO and WMO, has devised a coordination mechanism for the fit-for-purpose delivery of an end-to-end system, from ocean observations to met-ocean operational services. This paper offers a complete overview of the activities carried out by JCOMM and the status of the achievements up to 2017. The JCOMM stakeholders are the WMO Members and the IOC Member States, their research and operational Institutions, which mandated JCOMM to devise an international strategy to advance toward the achievement of the United Nations Sustainable Development Goals. The three activity areas, namely the Observation Program Area-OPA, the Data Management Program Area-DMPA and the Services and Forecasting Services Program Area-SFSPA have established several expert teams to contribute to the international coordination. OPA is organized in observing networks connected with different observing technologies, DMPA organizes the overall near-real time and delayed mode data assembly and delivery methodology and architecture and the SFSPA coordinates the met-ocean services stemming out of observations and data management. The future developments should strengthen the coordination in the three program areas considering the inclusion of new and emergent observing technologies, the interoperability of met-ocean data assembly centers and the establishment of efficient research to operations protocols, as well as better fit-for-purpose customized services for the public and private sectors

    The mediterranean sea we want

    Get PDF
    open58siThis paper presents major gaps and challenges for implementing the UN Decade of Ocean Science for Sustainable Development (2021-2030) in the Mediterranean region. The authors make recommendations on the scientific knowledge needs and co-design actions identified during two consultations, part of the Decade preparatory-phase, framing them in the Mediterranean Sea’s unique environmental and socio-economic perspectives. According to the ‘Mediterranean State of the Environment and Development Report 2020’ by the United Nations Environment Programme Mediterranean Action Plan and despite notable progress, the Mediterranean region is not on track to achieve and fully implement the Sustainable Development Goals of Agenda 2030. Key factors are the cumulative effect of multiple human-induced pressures that threaten the ecosystem resources and services in the global change scenario. The basin, identified as a climate change vulnerability hotspot, is exposed to pollution and rising impacts of climate change. This affects mainly the coastal zones, at increasing risk of extreme events and their negative effects of unsustainable management of key economic assets. Transitioning to a sustainable blue economy is the key for the marine environment’s health and the nourishment of future generations. This challenging context, offering the opportunity of enhancing the knowledge to define science-based measures as well as narrowing the gaps between the Northen and Southern shores, calls for a joint (re)action. The paper reviews the state of the art of Mediterranean Sea science knowledge, sets of trends, capacity development needs, specific challenges, and recommendations for each Decade’s societal outcome. In the conclusions, the proposal for a Mediterranean regional programme in the framework of the Ocean Decade is addressed. The core objective relies on integrating and improving the existing ocean-knowledge, Ocean Literacy, and ocean observing capacities building on international cooperation to reach the “Mediterranean Sea that we want”.openCappelletto M.; Santoleri R.; Evangelista L.; Galgani F.; Garces E.; Giorgetti A.; Fava F.; Herut B.; Hilmi K.; Kholeif S.; Lorito S.; Sammari C.; Lianos M.C.; Celussi M.; D'alelio D.; Francocci F.; Giorgi G.; Canu D.M.; Organelli E.; Pomaro A.; Sannino G.; Segou M.; Simoncelli S.; Babeyko A.; Barbanti A.; Chang-Seng D.; Cardin V.; Casotti R.; Drago A.; Asmi S.E.; Eparkhina D.; Fichaut M.; Hema T.; Procaccini G.; Santoro F.; Scoullos M.; Solidoro C.; Trincardi F.; Tunesi L.; Umgiesser G.; Zingone A.; Ballerini T.; Chaffai A.; Coppini G.; Gruber S.; Knezevic J.; Leone G.; Penca J.; Pinardi N.; Petihakis G.; Rio M.-H.; Said M.; Siokouros Z.; Srour A.; Snoussi M.; Tintore J.; Vassilopoulou V.; Zavatarelli M.Cappelletto M.; Santoleri R.; Evangelista L.; Galgani F.; Garces E.; Giorgetti A.; Fava F.; Herut B.; Hilmi K.; Kholeif S.; Lorito S.; Sammari C.; Lianos M.C.; Celussi M.; D'alelio D.; Francocci F.; Giorgi G.; Canu D.M.; Organelli E.; Pomaro A.; Sannino G.; Segou M.; Simoncelli S.; Babeyko A.; Barbanti A.; Chang-Seng D.; Cardin V.; Casotti R.; Drago A.; Asmi S.E.; Eparkhina D.; Fichaut M.; Hema T.; Procaccini G.; Santoro F.; Scoullos M.; Solidoro C.; Trincardi F.; Tunesi L.; Umgiesser G.; Zingone A.; Ballerini T.; Chaffai A.; Coppini G.; Gruber S.; Knezevic J.; Leone G.; Penca J.; Pinardi N.; Petihakis G.; Rio M.-H.; Said M.; Siokouros Z.; Srour A.; Snoussi M.; Tintore J.; Vassilopoulou V.; Zavatarelli M

    Towards the new Thematic Core Service Tsunami within the EPOS Research Infrastructure

    Get PDF
    Tsunamis constitute a significant hazard for European coastal populations, and the impact of tsunami events worldwide can extend well beyond the coastal regions directly affected. Understanding the complex mechanisms of tsunami generation, propagation, and inundation, as well as managing the tsunami risk, requires multidisciplinary research and infrastructures that cross national boundaries. Recent decades have seen both great advances in tsunami science and consolidation of the European tsunami research community. A recurring theme has been the need for a sustainable platform for coordinated tsunami community activities and a hub for tsunami services. Following about three years of preparation, in July 2021, the European tsunami community attained the status of Candidate Thematic Core Service (cTCS) within the European Plate Observing System (EPOS) Research Infrastructure. Within a transition period of three years, the Tsunami candidate TCS is anticipated to develop into a fully operational EPOS TCS. We here outline the path taken to reach this point, and the envisaged form of the future EPOS TCS Tsunami. Our cTCS is planned to be organised within four thematic pillars: (1) Support to Tsunami Service Providers, (2) Tsunami Data, (3) Numerical Models, and (4) Hazard and Risk Products. We outline how identified needs in tsunami science and tsunami risk mitigation will be addressed within this structure and how participation within EPOS will become an integration point for community development

    Towards the new Thematic Core Service Tsunami within the EPOS Research Infrastructure

    Get PDF
    Tsunamis constitute a significant hazard for European coastal populations, and the impact of tsunami events worldwide can extend well beyond the coastal regions directly affected. Understanding the complex mechanisms of tsunami generation, propagation, and inundation, as well as managing the tsunami risk, requires multidisciplinary research and infrastructures that cross national boundaries. Recent decades have seen both great advances in tsunami science and consolidation of the European tsunami research community. A recurring theme has been the need for a sustainable platform for coordinated tsunami community activities and a hub for tsunami services. Following about three years of preparation, in July 2021, the European tsunami community attained the status of Candidate Thematic Core Service (cTCS) within the European Plate Observing System (EPOS) Research Infrastructure. Within a transition period of three years, the Tsunami candidate TCS is anticipated to develop into a fully operational EPOS TCS. We here outline the path taken to reach this point, and the envisaged form of the future EPOS TCS Tsunami. Our cTCS is planned to be organised within four thematic pillars: (1) Support to Tsunami Service Providers, (2) Tsunami Data, (3) Numerical Models, and (4) Hazard and Risk Products. We outline how identified needs in tsunami science and tsunami risk mitigation will be addressed within this structure and how participation within EPOS will become an integration point for community development.publishedVersio

    The Joint IOC (of UNESCO) and WMO collaborative effort for Met-Ocean services

    Get PDF
    The WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) has devised a coordination mechanism for the fit-for-purpose delivery of an end-to-end system, from ocean observations to met-ocean operational services. This paper offers a complete overview of the activities carried out by JCOMM and the status of the achievements up to 2018. The JCOMM stakeholders consist of the research and operational institutions of WMO members and the IOC member states, which mandated JCOMM to devise an international strategy to move toward the achievement of the United Nations Sustainable Development Goals. The three areas of activity are the Observation Program Area (OPA), the Data Management Program Area (DMPA) and the Services and Forecasting Services Program Area (SFSPA), and several expert teams have been established to contribute to the international coordination efforts. OPA is organized into observing networks connected by different observing technologies, DMPA organizes the overall near-real time and delayed mode data assembly, and the delivery methodology and architecture, and the SFSPA coordinates the met-ocean services resulting from the observations and data management. Future developments should enhance coordination in these three program areas by considering the inclusion of new and emergent observing technologies, the interoperability of met-ocean data assembly centers and the establishment of efficient research to operations protocols, in addition to better fit-for-purpose customized services in both the public and private sectors

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Perceptions of adaptation, resilience and climate knowledge in the Pacific: The cases of Samoa, Fiji and Vanuatu

    Get PDF
    PURPOSE: While the South Pacific is often cited as highly vulnerable to the impacts of climate change, there is comparatively little known about how different groups perceive climate change. Understanding the gaps and differences between risk and perceived risk is a prerequisite to designing effective and sustainable adaptation strategies. DESIGN/METHODOLOGY/APPROACH: This research examined three key groups in Samoa, Fiji and Vanuatu: secondary school teachers, media personnel, and rural subsistence livelihood-based communities that live near or in conservation areas. This study deployed a dual methodology of participatory focus groups, paired with a national mobile phone based survey to gauge perceptions of climate change. This was the first time mobile technology had been used to gather perceptual data regarding the environment in the South Pacific. FINDINGS: The research findings highlighted a number of important differences and similarities in ways that these groups perceive climate change issues, solutions, personal vulnerability and comprehension of science among other factors. PRACTICAL IMPLICATIONS: These differences and similarities are neglected in large-scale top-down climate change adaptation strategies and have key implications for the design of disaster risk reduction and climate change adaptation and therefore sustainable development in the region. ORIGINALITY/VALUE: The research was innovative in terms of its methods, as well as its distillation of the perceptions of climate change from teachers, media and rural communities
    corecore