884 research outputs found

    Calcium Uptake and Release through Sarcoplasmic Reticulum in the Inferior Oblique Muscles of Patients with Inferior Oblique Overaction

    Get PDF
    We characterized and compared the characteristics of Ca2+ movements through the sarcoplasmic reticulum of inferior oblique muscles in the various conditions including primary inferior oblique overaction (IOOA), secondary IOOA, and controls, so as to further understand the pathogenesis of primary IOOA. Of 15 specimens obtained through inferior oblique myectomy, six were from primary IOOA, 6 from secondary IOOA, and the remaining 3 were controls from enucleated eyes. Ryanodine binding assays were performed, and Ca2+ uptake rates, calsequestrins and SERCA levels were determined. Ryanodine bindings and sarcoplasmic reticulum Ca2+ uptake rates were significantly decreased in primary IOOA (p<0.05). Western blot analysis conducted to quantify calsequestrins and SERCA, found no significant difference between primary IOOA, secondary IOOA, and the controls. Increased intracellular Ca2+ concentration due to reduced sarcoplasmic reticulum Ca2+ uptake may play a role in primary IOOA

    A genome-wide structure-based survey of nucleotide binding proteins in M. tuberculosis

    Get PDF
    Nucleoside tri-phosphates (NTP) form an important class of small molecule ligands that participate in, and are essential to a large number of biological processes. Here, we seek to identify the NTP binding proteome (NTPome) in M. tuberculosis (M.tb), a deadly pathogen. Identifying the NTPome is useful not only for gaining functional insights of the individual proteins but also for identifying useful drug targets. From an earlier study, we had structural models of M.tb at a proteome scale from which a set of 13,858 small molecule binding pockets were identified. We use a set of NTP binding sub-structural motifs derived from a previous study and scan the M.tb pocketome, and find that 1,768 proteins or 43% of the proteome can theoretically bind NTP ligands. Using an experimental proteomics approach involving dye-ligand affinity chromatography, we confirm NTP binding to 47 different proteins, of which 4 are hypothetical proteins. Our analysis also provides the precise list of binding site residues in each case, and the probable ligand binding pose. As the list includes a number of known and potential drug targets, the identification of NTP binding can directly facilitate structure-based drug design of these targets

    Supermaximal Recession and Resection in Large-Angle Sensory Exotropia

    Get PDF
    In cases of extropia with an exodeviation angle over 50 prism diopter (PD), a 3- or 4-muscle surgery is a rational option. But, in patients with sensory exotropia, there is usually a strong preference for a monocular procedure to avoid surgery on the single seeing eye. Thus, we confined surgery to visually poor eyes, and performed a medial rectus muscle resection with a mean of 10.3 mm (range, 9-11 mm) and a lateral rectus muscle recession with a mean of 12.8 mm (range, 10-14 mm) in 4 adult sensory exotropia patients who had a mean deviation of 82.3 PD (range, 75-90 PD). The mean postoperative angle of exodeviation was 2.0 PD (range, ortho-8 PD). The limitation on abduction was not disfiguring. Other expected disfigurements, such as narrowing of the palpebral fissure or enophthalmos, were not conspicuous. The mean follow-up period was 4.5 months (range, 3-7 months). In large-angle sensory exotropia, instead of additive surgery on the seeing eye, supermaximal medial rectus resection and lateral rectus recession only on the visually poor eye is a clinically feasible surgical option

    STATIC AND DYNAMIC CHARACTERISTICS OF AIR FOIL THRUST BEARING CONSIDERING TILTING PAD CONDITION

    Get PDF
    ABSTRACT The thrust pad of the rotor is used to sustain the axial force generated due to the pressure difference between the compressor and turbine sides of turbomachinery such as the gas turbines and turbochargers. Furthermore, this thrust pad has a role to maintain and determines the attitude of the rotor. In a real system, it also helps reinforce the stiffness and damping of the journal bearing. This study was performed for the purpose of analyzing the characteristics of the air foil thrust bearing. The model for the air foil thrust bearing used in this study is composed of two parts: one is an inclined plane, which plays a role to increase the load carrying capacity using the physical wedge effect, and the other is a flat plane. This study mainly consists of three parts. First, the static characteristics were obtained over the region of the thin air film using the finite difference method (FDM) and the bump foil characteristics using the finite element method (FEM). Second, the analysis of the dynamic characteristics was conducted by perturbation method. For more exact calculation, the rarefaction gas coefficients perturbed about the pressure and film thickness were taken into consideration. At last, the static and dynamic characteristics of the tilting condition of the thrust pad were obtained. Furthermore, the load carrying capacity and torque were calculated for both tilting and not-tilting conditions. From this study, several results were presented: 1) the stiffness and damping of the bump foil under the condition of the various bump parameters, 2) the load carrying capacity and bearing torque at the tilting state, 3) the bearing performance under various bearing parameters, 4) the effects considering the rarefaction gas coefficients

    Oral intake of Lactobacillus rhamnosus M21 enhances the survival rate of mice lethally infected with influenza virus

    Get PDF
    BackgroundInfluenza viruses cause acute respiratory disease. Because of the high genetic variability of viruses, effective vaccines and antiviral agents are limited. Considering the fact that the site of influenza virus entry is the mucosa of the upper respiratory tract, probiotics that can enhance mucosal immunity as well as systemic immunity could be an important source of treatment against influenza infection.MethodsMice were fed with Lactobacillus rhamnosus M21 or skim milk and were challenged with influenza virus. The resulting survival rate, lung inflammation, and changes in the cytokine and secretory immunoglobulin A (sIgA) levels were examined.ResultsBecause of infection (influenza virus), all the mice in the control group and 60% of the mice in the L. rhamnosus M21 group died; however, the remaining 40% of the mice fed with L. rhamnosus M21 survived the infection. Pneumonia was severe in the control group but moderate in the group treated with L. rhamnosus M21. Although there were no significant changes in the proinflammatory cytokines in the lung lysates of mice collected from both groups, levels of interferon-γ and interleukin-2, which are representative cytokines of type I helper T cells, were significantly increased in the L. rhamnosus M21-treated group. An increase in sIgA as well as the diminution of inflammatory cells in bronchoalveolar lavage fluid was also observed in the L. rhamnosus M21-treated group.ConclusionThese results demonstrate that orally administered L. rhamnosus M21 activates humoral as well as cellular immune responses, conferring increased resistance to the host against influenza virus infection

    The architecture of ArgR-DNA complexes at the genome-scale in<i> Escherichia coli</i>

    Get PDF
    DNA-binding motifs that are recognized by transcription factors (TFs) have been well studied; however, challenges remain in determining the in vivo architecture of TF-DNA complexes on a genome-scale. Here, we determined the in vivo architecture of Escherichia coli arginine repressor (ArgR)-DNA complexes using high-throughput sequencing of exonuclease-treated chromatin-immunoprecipitated DNA (ChIP-exo). The ChIP-exo has a unique peak-pair pattern indicating 5′ and 3′ ends of ArgR-binding region. We identified 62 ArgR-binding loci, which were classified into three groups, comprising single, double and triple peak-pairs. Each peak-pair has a unique 93 base pair (bp)-long (±2 bp) ArgR-binding sequence containing two ARG boxes (39 bp) and residual sequences. Moreover, the three ArgR-binding modes defined by the position of the two ARG boxes indicate that DNA bends centered between the pair of ARG boxes facilitate the non-specific contacts between ArgR subunits and the residual sequences. Additionally, our approach may also reveal other fundamental structural features of TF-DNA interactions that have implications for studying genome-scale transcriptional regulatory networks
    corecore