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A genome-wide structure-based 
survey of nucleotide binding 
proteins in M. tuberculosis
Raghu Bhagavat1, Heung-Bok Kim3, Chang-Yub Kim3, Thomas C. Terwilliger  3, Dolly Mehta1, 
Narayanaswamy Srinivasan2 & Nagasuma Chandra1

Nucleoside tri-phosphates (NTP) form an important class of small molecule ligands that participate in, 
and are essential to a large number of biological processes. Here, we seek to identify the NTP binding 
proteome (NTPome) in M. tuberculosis (M.tb), a deadly pathogen. Identifying the NTPome is useful 
not only for gaining functional insights of the individual proteins but also for identifying useful drug 
targets. From an earlier study, we had structural models of M.tb at a proteome scale from which a set 
of 13,858 small molecule binding pockets were identified. We use a set of NTP binding sub-structural 
motifs derived from a previous study and scan the M.tb pocketome, and find that 1,768 proteins or 
43% of the proteome can theoretically bind NTP ligands. Using an experimental proteomics approach 
involving dye-ligand affinity chromatography, we confirm NTP binding to 47 different proteins, of 
which 4 are hypothetical proteins. Our analysis also provides the precise list of binding site residues in 
each case, and the probable ligand binding pose. As the list includes a number of known and potential 
drug targets, the identification of NTP binding can directly facilitate structure-based drug design of 
these targets.

Nucleoside tri-phosphates (NTP) participate in many cellular processes, regulate signal transduction events, 
mediate a number of transport reactions and play a role in maintaining the cell structure1–3. They form a vital part 
of many metabolic reactions and regulate many other processes like nucleotide synthesis and cell signaling1,4. 
Adenosine triphosphate (ATP) is also ubiquitously conserved as the currency molecule in biological cells and 
used as a phosphate donor for phosphorylation of various proteins1,2,4. Besides these, ATP is also known to serve 
as an allosteric modulator of a number of proteins5,6. Several ATP binding proteins are known to be essential in 
different organisms and have been explored for their potential as drug targets of antibacterial and anticancer 
agents7. Although a number of proteins that bind to ATP are known in many organisms, the entire repertoire of 
ATP binding proteins (ATPome) in a given cell, remains incompletely characterized. A systematic profiling of the 
whole proteome to find the ATPome is of great interest, and will impact drug target identification. Identification 
of the ATPome will also lead to a more complete annotation of many hypothetical and otherwise uncharac-
terized proteins that may have been associated with the disease in some form as identified by gene expression 
or genome-wide association or related studies, thereby providing a larger pool of proteins as a base for target 
selection. Considering the whole ATPome will also be useful in identifying drug targets that can achieve better 
selectivity. Chemical proteomics approaches have been explored in some organisms in which a chemical probe is 
used to capture ATP binding proteins, which are subsequently characterized through digestion and mass profil-
ing8–10. These methods have provided a high-throughput means of identifying ATP binding proteins. However, 
the methods have their limitations such as many challenges in probe design, capture coverage, capture strength 
and detection sensitivity, which remain to be addressed.

Mycobacterium tuberculosis (M.tb), the causative for tuberculosis is a deadly human pathogen that leads to 
more than 2 million deaths every year11 (Global tuberculosis report 2016). Although a handful of drugs are 
available and are used widely in the clinic, the emergence of drug resistance is posing a major problem in the 
management of the disease, warranting discovery of new drugs12,13. Towards this, identification of new drug tar-
gets in the pathogen is of great interest, which is being explored from multiple angles14–16. The genome sequence 
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of this bacterium was one of the earliest whole genome sequences to be determined17. Although there has been 
significant progress in genome annotation since then, a number of proteins remain unannotated or incompletely 
characterized. This is particularly true for many hypothetical proteins. High confidence annotations are key for 
identifying novel drug targets and informing new drug discovery efforts. Given the importance of ATP, several 
ATP binding proteins are expected to be viable drug targets. Bedaquiline, a drug that has recently entered the 
market, inhibits ATP synthase in mycobacteria18. Other proteins such as icl, pcaA and ddlA are being explored as 
drug targets19–22. Other nucleotide binding sites, are also likely to be important as drug targets, but are much less 
explored23. A challenge in targeting NTP binding proteins however, is to find those proteins that are sufficiently 
different from the host proteins, so as to enable design of selective inhibitors. A genome-wide identification of the 
NTPome in M.tb will be very useful that can be used to search for possible targets which have a high potential for 
achieving selectivity.

A chemical proteomics approach has been recently reported that utilizes a desthiobiotin-conjugated ATP as a 
molecular probe that captures target enzymes that are previously covalently modified with biotin in their nucle-
otide binding domains24. The captured proteins are subsequently digested with trypsin and labeled peptides are 
enriched via streptavidin affinity capture beads and subjected to LC-MS/MS for the identification of ATP-labeled 
proteins24, and 539 proteins are identified through this approach. Another method that has been used for the 
same purpose involves the use of an activity-based probe to annotate and validate ATP binding proteins. About 
317 ATP binding proteins are identified from this method8. A quick comparison of the list of proteins produced 
by the two methods indicates that only a small fraction is common to both, clearly suggesting that a number of 
false negatives exist in both the methods. New orthogonal methods are necessary for independent and systematic 
identification of the ATP binding proteins and also for other nucleotide binding proteins. In this work, we explore 
two independent approaches, (a) a computational screen that identifies proteins that have NTP binding structural 
signatures and (b) a chemical proteomics screen that identifies NTP binding proteins in M.tb cell extract.

Bioinformatics methods which can screen the proteomes from multiple perspectives offer a great benefit in 
terms of being comprehensive, the ease of screening, the speed and control over the sensitivity of detection. Use 
of protein structures, chemical similarity and network-based dynamics are being increasingly used in protein 
function annotation, drug development process and understanding the molecular bases of disease25–27. A com-
monly used computational probe is a sequence motif, an example being the P-loop containing Walker motif that 
is characteristic of ATP binding28,29. However, it is clear that the presence of such a sequence motif is neither a 
necessity nor a sufficient criterion for ATP binding. Many proteins that do not contain this motif are known to 
bind ATP. A search for the Walker motif in the genome sequence of M.tb fetches only 161 proteins. Structural 
motifs are typically far more superior to sequence motifs as they are more conserved and more reflective of a 
given binding function than the sequence motifs. This is especially true for ATP binding sites as a diverse array of 
proteins bind to ATP. However, there are many hurdles to cross in order to utilize structural motifs, which are (a) 
structural data of proteins is required at a proteome-scale, which is far from trivial b) the structural motifs need to 
be defined clearly c) structural motifs must be specific towards a given ligand recognition, and (d) sensitive meth-
ods are required to compare structural motifs against protein structures at a proteome-scale. In our laboratory, we 
are equipped with resources and methods for all four aspects. We have previously modelled protein structures in 
M.tb for about 70% of the proteome25 and have developed a suite of algorithms to detect binding pockets30, com-
pare and match the binding pockets31,32, superpose binding sites33 and combine them into a workflow to obtain 
structure-based function annotations34. Recently, we have carried out a large-scale analysis of 4,766 ATP and 
other NTP binding proteins from PDB and have grouped all known NTP binding sites into 27 different site-types, 
and have derived a structural motif or a site-signature for each type35. The known NTP binding proteins from 
the PDB comprise of members from a minimum of 374 sequence families and 145 structural folds. Such a large 
diversity in these makes it difficult to use sequence-based or fold-based methods for identifying NTP binding 
proteins. On the other hand, the three dimensional structural motifs at the binding sites that we have derived are 
very useful for this purpose. In the laboratory, we have previously used such an approach to obtain a structural 
annotation of the M.tb proteome25, identify characteristic features of sialic acid binding proteins36 and also for 
other sugar binding proteins37,38.

In this work, we use the 27 site signatures as search keys and carry out a genome-wide survey, to the extent 
covered by the structural models. From this, we obtain a set of 1,768 proteins that can be identified as NTP 
binding proteins. Some of these are identified by the chemical proteomics approaches as well. In addition, we 
find many more, several of which have indirect evidence from literature, indicating that we have much improved 
sensitivity as compared to those methods. We then apply a biochemical screen, based on dye-ligand affinity chro-
matography (DLAC), and experimentally validate 47 more NTP binding proteins. We thus present a combined 
computational proteomics and a biochemical approach that identifies ATP binding proteins in any proteome, 
where structural models are provided as an input. In addition, our computational approach also identifies guano-
sine triphosphate (GTP), cytidine triphosphate (CTP), uridine triphosphate (UTP) and thymidine triphosphate 
(TTP) binding sites in the proteome. Our analysis leads to a rich comprehensive resource of nucleotide binding 
proteins in M.tb. Since the identification is made on the basis of binding site structures, the binding site location 
and the individual amino acid residues are also explicitly identified in each protein.

Results
Binding sites comparison and identification of the ‘NTPome’. The structural models of 2877 pro-
teins amounting to 70% of the M.tb proteome, which were generated by us previously, contained a total of 13858 
small molecule binding pockets. The pockets identified were of high confidence as they were detected as consen-
sus by three independent binding site prediction methods based on energetic considerations, geometric parame-
ters and evolutionary information (See Methods: section 4.1). Screening the M.tb pocketome using each of the 27 
structural motifs yielded 1,768 hits, which we refer to as the ‘NTPome’ hereafter. Supplementary Table ST1 lists 
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all these proteins, along with their functional categories. The number of hits is indeed dependent on the selected 
threshold for considering a pair of sites as similar. A higher threshold will identify fewer but more confident hits 
but will have a large number of false negatives whereas, a lower threshold will lead to more hits but with a number 
of false positives. The selected threshold is expected to be a trade-off on the false negatives so as to minimize false 
positives. Supplementary Table ST2 shows the number of proteins identified with different thresholds, whereas 
Supplementary Table ST3 lists the highest PMS (PocketMatch Score) each of the 1,768 proteins share with the 
queried NTP motif. Higher the PMS, higher is the similarity and higher is the confidence.

In order to understand how well our method was performing, we tested whether the M.tb proteins that were 
complexed to one of the NTPs and whose structures are available, were correctly identified by our approach. 
The Protein Data Bank39 (PDB) contains 108 entries for M.tb proteins bound to NTP ligands, which correspond 
to crystal structures of 35 different proteins. 18 of them are bound to adenine-based nucleotide ligands, which 
means these 18 are adenine specific, 3 entries are specific to GDP, 2 are specific to CTP, 4 proteins are specific to 
uracil-based nucleotides and 2 are specific to TTP. The remaining 6 proteins are bound to more than one type of 
NTP ligand. For all these entries, the information of their ligands or binding site residues was removed before 
scanning for NTP binding sites. In other words, for these proteins, an independent prediction for NTP binding 
potential was carried out using only the apo-protein structure. 30 out of these 35 proteins were in fact identified as 
NTP binding proteins using our approach. It was also verified that the location of the pocket and the binding site 
residues were correctly identified in our predictions. This served as a first-step validation exercise, demonstrating 
that known proteins are correctly identified as hits for NTP binding. The 5 proteins that were missed fall into the 
category of false negatives at the given threshold, and can be identified if partial similarities are considered. In 
order to minimize false positives, we have restricted to whole site similarities and have not used partial similari-
ties as criteria for identifying NTP binding proteins.

We then tested if our predictions picked up the correct ligand as well. We scanned the predicted sites for these 
proteins against all the known NTP binding sites from PDB at the binding site level, and the ligand from the 
highest scoring hit was taken as the ligand for the protein being studied. Adenine-based nucleotide was correctly 
identified as the ligand in 17 out of 18, GDP in 3 out of 3, TTP in 2 out of 2, and uracil-based nucleotide in 2 out 
of 4 by our method. It was further seen that CTP ligand was identified as hit in both the cases at a slightly lower 
threshold of PMSmax 0.48, for one protein, and 0.47 for another. This also meant that the motifs correctly iden-
tified the specific ligands that were actually seen in PDB, further suggesting the sensitivity of discrimination of 
purine and pyrimidine based ligands, and the motifs captured the subtle differences wherever possible.

The query motifs, once derived, are in essence a group of amino acids at the binding site, and are not explicitly 
tagged with a ligand and hence no direct information of the specific ligand is used while screening. In order to 
get an estimate of the most likely ligand for each of these binding sites in the NTPome, each predicted NTP site 
was taken and reverse screened against known NTP binding sites from PDB and the ligand of the highest scoring 
hit was taken as the associated ligand for the predicted site. From this, 1,286 could be associated with ATP as the 
topmost ligand hit, 250 with GTP, 102 with CTP, 86 with TTP and 44 with UTP.

Distribution of protein classes in the NTPome and preference of certain motifs. In comparison 
to the known NTP binding sites in M.tb, the hits in the NTPome is a phenomenal increase in number, indicating 
that more than one third of the proteome harbours NTP binding sites. Not surprisingly, 610 of these are enzymes 
involved in the intermediary metabolism and respiration class. Several proteins related to cell wall and cell pro-
cesses including transport proteins were also identified to harbour NTP binding sites. Figure 1a shows the tuber-
culist distribution of functional classes of the predicted NTPome. A KEGG mapper representation of the various 
pathways that are enriched and more represented in the NTPome is shown in Supplementary Fig. S1. From this, it 
can be seen that lipid metabolism, nucleotide metabolism, amino acid metabolism and carbohydrate metabolism 
form the major pathways that are seen in the NTPome. It was also interesting to note that many proteins belong-
ing to the hypothetical category were identified in our NTPome. The presence of NTP binding motifs in them 
provides a clue about their function. Another category of proteins of interest in the M.tb genome is that of the 
PE/PPE family. 58 of these proteins were identified among the hits in our analysis, which could not be identified 
through sequence based searches.

Since a genome-wide scan with 27 different binding motifs was carried out, it was of interest to see how many 
of these 27 motifs were present in M.tb, and what are their relative frequencies. It was observed that 24 of the 27 
motifs were identified in M.tb. However, a strong preference was seen for some motifs, especially for the motif 
represented by a) DhaL-like with DAK1/DegV-like fold (represented by site-type 3PNL) 35%, b) Carbamate 
kinase-like fold (represented by site-type 3QUR) 34%, c) His-Me finger endonucleases (represented by site-type 
2ZKJ) 32%, and d) MCP/YpsA-like (3SBX) 30%.

The 27 site-types identified for NTP binding represented 4766 proteins belonging to about 145 different 
structural folds. Even though they were representatives of the entire repertoire of NTP binding space of pro-
teins, it was seen that among the 27 types, there exists some partial similarities. Using these part-similarities, 
a super-classification of 27 site-types into 9 super-types was further carried out in our previous study35. It was 
further interesting to note that majority of the NTPome which exhibits significant similarities with the site-types 
3PNL, 3QUR, 2ZKJ and 3SBX, belonged to the same super-type. In other words, this super-type is seen to be 
predominant in the NTPome. The other preferred site-types of 3M6A, 3M49, 3T7M and 2CDU that occur in 
NTPome belong to different super-types. However, for the purposes of identifying similarities among diverse 
classes and function annotation, consideration at the super-type level was not found to be very insightful as it 
will preclude the use of many important residues in the analysis, which is best obtained at the level of site-types. 
Hence for function annotation and all further analysis, the entire NTPome was analyzed at the level of individual 
site-types and not at the level of super-types.
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The distribution of the 24 motifs across the NTPome is shown in Fig. 1b. Figure 2 shows the binding site 
superpositions for 15 examples from the hypothetical category that were identified as hits for NTP binding. 
Supplementary Fig. S2 shows the alignments for 8 pairs of proteins belonging to the PE/PPE family which are 
identified as hits.

Experimental testing of NTP binding for selected proteins. We then used an independent exper-
imental method to test if we can get validation for any proteins predicted by our computational method. A 
high-throughput method of using Cibacron Blue F3GA dye-ligand affinity chromatography (DLAC) described 
previously was carried out40,41. In this method, initially we used M.tb cell extract proteins to bind on the dye 
and elute with nucleotide ligands after intensive washing, and the proteins eluted by nucleotides were analyzed 
by 2D-gel analysis and mass spectroscopy (MS) for identification of each eluted protein shown on 2D-gel. To 
confirm the 2D and MS data, for some proteins that we could purify, we tried the DLAC process again using the 
purified M.tb proteins. According to these purified proteins data, some part of NTPome data were obtained by 
the DLAC solely with M.tb proteins purified without 2D-gel and MS process because the IDs of purified proteins 
are known. The ligand data obtained by DLAC was applied to improve crystal quality of M.tb proteins to be able 
to solve their structures40.

It has to be noted that the chemical proteomics approach that has been adopted using DLAC technique is a 
high-throughput method that utilizes cytosolic extract or membrane fraction. We have also reported that only 
40% of cytosolic protein bound to the resin and could be detected, as determined by Bradford assay. Hence, it is 
difficult to answer the question of how many proteins of the 1,768 in NTPome were actually tested for NTP bind-
ing. Using the DLAC approach, we have successfully tested NTP binding for 47 proteins from the predicted list, 
which is still a very encouraging number. As examples of NTP interaction analyses by DLAC, Fig. 3A shows 2D 
gel of M.tb cytosolic extract proteins eluted by ATP, and in Fig. 3B, the result of DLAC performed with purified 
Rv2780 is shown in 1D gel and confirmed its interaction with ATP as well as other ligands like adenosine, ADP, 
AMP and GTP. Table 1 lists the set of proteins that show interaction with the NTP ligands as tested by DLAC. 
Figure 4 shows binding site alignments of 15 pairs of proteins with their respective query motifs, that have been 
experimentally validated using the experimental approach. It is very convincing to see that of the 47 proteins 
tested successfully for NTP binding, 4 of them are hypotheticals, and are reported for NTP binding for the first 
time by us.

Comparison with experimentally identified ATP binding proteins from literature. We then 
tested if any of the predictions were supported by experimental observations from literature. Two different studies 
describing high-throughput identification of ATP binding proteins have been reported in literature8,9. A search for 
adenosine binding in M.tb by utilizing a high throughput activity-based protein profiling (ABPP), combined with 
sequence-based methods was reported by Ansong et al.8, where they identified 317 proteins as capable of binding 
to ATP. 218 of the 317 proteins were identified by our approach as well, which included 31 conserved hypothet-
ical proteins. Wolfe et al.9 have reported a chemical proteomics approach where they use a desthiobiotin-label 
and carry out a shotgun proteomics analysis to identify proteins in the enriched subproteome, from which they 
identified around 176 proteins. Upon comparison, we found that 134 proteins are in common between our pre-
dictions and their list. By comparison with the results of these proteomics approaches with our DLAC data, we 
found 13 proteins identified by our method (Rv0119, Rv0440, Rv0500A, Rv1391, Rv1843c, Rv1908c, Rv2145c, 

Figure 1. (A) Pie-chart showing the different tuberculist functional classes for M.tb proteins that were 
identified in the NTPome. It was indeed interesting to see a major portion of the hypotheticals that were 
identified, which could serve as a possible function annotation at the molecular level of NTP binding for 
these proteins. Same is with the PE/PPE family proteins which are not known to bind NTP. (B) Distribution 
of identified NTP motifs in the M.tb proteome. Although 24 motifs were seen across the different proteins in 
NTPome, there was a preference for certain motifs, namely 3PNL-like motif, 3QUR-like, 2ZKJ-like, 3KEU-
like and 3SBX-like motifs. 3PNL, 3QUR, 2ZKJ, 3KEU and 3SBX refer to the PDB codes of the representative 
proteins in the study of identifying NTP motifs that was carried out previously, and the number in each sector 
refers to the total number of M.tb proteins identified for that particular motif.
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Rv2215, Rv2461c, Rv2783c, Rv3028c, Rv3336c and Rv3389c), to be validated by all three proteomics methods. 
Two other databases namely the Patric database42 and TBDB43 are widely used and serve as excellent resources for 
annotations based on individual reports describing functional annotation of individual proteins. Out of the 245 
proteins that were annotated for NTP binding in Patric database, 177 were correctly identified by us. Similarly, 
TBDB has a list of 123 proteins annotated as NTP binding, of which 87 were correctly identified by us. Figure 5 
shows a summary of how our predictions fare as compared to what is known in literature. From this comparison 
with experimentally identified ATP binding proteins from literature, overall, the success rate of identifying a NTP 
binding site purely based on binding site characteristics as in this study is seen to be quite high, which is in the 
range of 68 to 76%.

Function annotation for the putative NTP binding proteins currently categorized as hypothet-
icals and are of unknown function. The M.tb genome has about 1,042 proteins that are still annotated as 
uncharacterized, and their function still remain unknown. 294 of these were found to be in the NTPome. Four 
of these conserved hypotheticals, which are Rv0500A, Rv1717, Rv2160c and Rv3075c, were validated to be ATP 
binding proteins by us using the DLAC approach. Detecting an NTP binding pocket provides important clues 
about the functional roles of these proteins. In comparison to the previously reported studies described in the 
previous section, many new ones were identified by our approach, reflecting on the sensitivity of this method. 
Supplementary Table ST1 (sheet 2) lists the proteins under the category of hypotheticals and unknown function 
that were identified as hits for NTP binding in our analysis.

Another category of the proteins that require functional annotations are those from the Structural Genomics 
efforts. Quite often the functional aspects of the proteins that are experimentally solved under this initiative 
remain uncharacterized, in spite of the structure solution. There are around 333 M.tb structures deposited in the 
PDB that resulted out of structural genomics initiatives. Of these, 242 proteins are in the un-liganded form. In 
the NTPome, 3 proteins that belong to this category were identified using the default threshold of PMSmax ≥ 0.5. 
However, when partial similarities were considered through the PMSmin score, 5 more proteins were identi-
fied as hits. Table 2 shows the list of proteins in this category that were identified along with the PocketMatch 
scores. Alignments of the binding sites of M.tb proteins with the motifs for selected examples are shown in 
Supplementary Fig. S3. The geometry and the chemical nature of amino acids at the binding site clearly indicated 
the possibility of binding ATP in 5 proteins, GTP in 3 proteins, TTP in 2, and UDP in 2 proteins. This includes 

Figure 2. Pair-wise superpositions for 15 pairs of proteins that fall under the category of hypotheticals. 
The reference NTP motif is shown in red sticks and sites belonging to M.tb proteins are shown in blue stick 
representations in each panel, with the ligand shown in ball and stick model. It can be seen that there are not 
only identical residue matches between the sites in some cases, but also, similar geometrical orientations of the 
side chain of amino acid residues, further strengthening the possibility of NTP binding by these proteins. It has 
to be noted that the proteins in the pair do not share any relatedness in their sequences and folds.
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the possibility of the same protein binding to more than one NTP ligand, which is observed in nature for many 
proteins, including enzymes.

Identification of additional fold types for a possible NTP binding. A genome-wide survey for NTP 
binding sites carried out here enables an investigation of whether there are any additional folds that contain NTP 
binding sites. The fold space that is captured by experimentally solved structures for M.tb proteins binding to 
NTP ligands belongs to 23 different folds, such as TIM beta/alpha barrel, adenine nucleotide alpha hydrolase-like, 
nucleotide-diphospho-sugar transferases, P-loop containing nucleoside triphosphate hydrolases, and Protein 
kinase-like (PK-like), to name a few. The entire set of known NTP binding pockets from PDB were observed to 
belong to 145 different structural folds35. The set of 1,768 proteins in the M.tb NTPome belonged to a set of 350 
different folds. A converse question to ask is- how many of these 350 folds were seen in PDB as NTP binding pro-
teins from any species. In other words, how many of the 350 are in the set of 145 folds from the PDB dataset. 92 
of the 350 folds were found to be in the PDB dataset as well, where as the rest 258 were newly identified fold-NTP 
binding site associations form this work. Some examples of these 92 folds are a) alpha-alpha superhelix fold - 
(representative in PDB: 1WA5), b) beta-Grasp fold - (representatives in PDB: 1Y8R and 1JWA), c) CO dehydro-
genase flavoprotein C-domain like fold - (representative in PDB: 2CDU), d) Sigma2 domain of RNA polymerase 
sigma factors fold - (representative in PDB: 3LEV), and e) Dehydroquinate synthase-like fold -(representative 
from PDB: 1NVA). Thus, in addition to the 23 known folds for NTP binding in the M.tb NTPome which have 
experimentally solved structures, and 92 folds for which one or more fold templates are available in PDB for NTP 
binding, there are 258 new fold associations for NTP binding identified from this work. Some of the folds that fall 
in this category are listed in Table 3.

Figure 3. (A) 2D-gel image of M.tb cytosolic DLAC fraction eluted by ATP. The identified M.tb proteins are 
labeled on the representative protein spots with their Rv IDs. The Rv IDs of the rest of spots are listed in Table 1. 
This image shows part of original 2-D gel in the range of MW 100-10 kDa and pI 6–4.5, which covers most 
of the DLAC eluted proteins by ATP. (B) 1D SDS-PAGE of NTP ligands interaction analysis by DLAC using 
purified Rv2780. Each lane shows the fraction obtained during the process of DLAC including recombinant 
Rv2780 loaded on to Cibacron Blue F3GA dye resin (Rv2780 input), the fraction after washing with column 
buffer (wash) and Rv2780 protein eluted by five NTP ligands (Adenosine, ATP, ADP, AMP and GTP) showing 
the molecular weight marker on left. The Rv2780 band shown in each ligand lane indicates the interaction of 
applied ligand. From the darkness of bands –protein amount eluted by each ligand, the degree of each ligand’s 
interaction with Rv2780 can be also obtained.
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Rv ID Protein Name NTP ligands identified

Rv0054 Single-strand binding protein Ssb (helix-destabilizing protein) GTP

Rv0119 Probable fatty-acid-CoA ligase FadD7 (fatty-acid-CoA synthetase) (fatty-acid-CoA synthase) AMP ADP GTP

Rv0350 Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70) AMP ATP GTP

Rv0357c Probable adenylosuccinate synthetase PurA (imp-aspartate ligase) (ADSS) (ampsase) ADP ATP GTP

Rv0391 Probable O-succinylhomoserine sulfhydrylase MetZ (OSH sulfhydrylase) GTP

Rv0440 60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock 
protein 65) (cell wall protein A) (antigen A) ATP

Rv0467 Isocitrate lyase Icl (isocitrase) (isocitratase) AMP ADP GTP

Rv0500A Unknown function AMP GTP

Rv0672 Probable acyl-CoA dehydrogenase FadE8 ATP GTP

Rv0859 Possible acyl-CoA thiolase FadA AMP ADP ATP GTP

Rv1007c Methionyl-tRNA synthetase MetS (MetRS) (methionine-tRNA ligase) AMP ATP GTP

Rv1017c Probable ribose-phosphate pyrophosphokinase PrsA (phosphoribosyl pyrophosphate 
synthetase) (PRPP synthetase) AMP ADP ATP GTP

Rv1023 Probable enolase Eno ATP

Rv1133c Probable 5-methyltetrahydropteroyltriglutamate–homocysteine methyltransferase MetE 
(methionine synthase) ATP GTP

Rv1327c Probable glucanase GlgE GTP

Rv1383 Probable carbamoyl-phosphate synthase small chain CarA (carbamoyl-phosphate synthetase 
glutamine chain) ADP ATP

Rv1391 Probable DNA/pantothenate metabolism flavoprotein homolog Dfp ATP GTP

Rv1436 Probable glyceraldehyde 3-phosphate dehydrogenase Gap (GAPDH) AMP ADP ATP GTP

Rv1559 Probable threonine dehydratase IlvA ADP ATP GTP

Rv1688 Possible 3-methyladenine DNA glycosylase Mpg ADP ATP GTP

Rv1717 Conserved hypothetical protein ADP ATP

Rv1843c Probable inosine-5′-monophosphate dehydrogenase GuaB1(imp dehydrogenase) (IMPDH) 
(IMPD) AMP ADP ATP GMP GTP

Rv1908c Catalase-peroxidase-peroxynitritase T KatG AMP ADP GTP

Rv2029c 6-phosphofructokinase PfkB (phosphohexokinase) (phosphofructokinase) ADP GTP

Rv2031c Heat shock protein HspX (alpha-crystallin homolog) (14 kDa antigen) (HSP16.3) AMP ADP ATP GTP

Rv2145c Diviva family protein Wag31 AMP ADP ATP GTP

Rv2160c Conserved hypothetical protein ADP ATP GTP

Rv2215 DlaT GTP

Rv2461c Probable ATP-dependent CLP protease proteolytic subunit 1 ClpP1 (endopeptidase CLP) ATP GTP

Rv2605c Probable acyl-CoA thioesterase II TesB2 (TEII) GTP

Rv2688c Antibiotic-transport ATP-binding protein ABC transporter ATP GTP

Rv2780 Secreted L-alanine dehydrogenase Ald (40 kDa antigen) (TB43) AMP ADP ATP GTP

Rv2783c Bifunctional protein polyribonucleotide nucleotidyltransferase GpsI: guanosine pentaphosphate 
synthetase + polyribonucleotide nucleotidyltransferase (polynucleotide phosphorylase) (pnpase) AMP ADP ATP GTP

Rv2855 NADPH-dependent mycothiol reductase Mtr ATP

Rv2858c Probable aldehyde dehydrogenase AldC AMP ADP ATP GTP

Rv2996c Probable D-3-phosphoglycerate dehydrogenase SerA1 (PGDH) ADP

Rv3028c Probable electron transfer flavoprotein (alpha-subunit) FixB (alpha-ETF) (electron transfer 
flavoprotein large subunit) (ETFLS) GTP

Rv3075c Conserved protein ATP GTP

Rv3273 Probable transmembrane carbonic anhydrase (carbonate dehydratase) (carbonic dehydratase) ADP ATP GTP

Rv3280 Probable propionyl-CoA carboxylase beta chain 5 AccD5 (pccase) (propanoyl-CoA:carbon 
dioxide ligase) AMP

Rv3285 Probable bifunctional protein acetyl-/propionyl-coenzyme A carboxylase (alpha chain) AccA3: 
biotin carboxylase + biotin carboxyl carrier protein (BCCP) AMP ADP ATP GTP

Rv3336c Probable tryptophanyl-tRNA synthetase TrpS (tryptophan-tRNA ligase) (TRPRS) (tryptophan 
translase) ATP

Rv3389c Probable 3-hydroxyacyl-thioester dehydratase HtdY ATP

Rv3401 Conserved protein AMP

Rv3457c Probable DNA-directed RNA polymerase (alpha chain) RpoA (transcriptase alpha chain) (RNA 
polymerase alpha subunit) (DNA-directed RNA nucleotidyltransferase) ATP GTP

Table 1. showing the list of M.tb proteins that were verified for NTP binding using DLAC. The different NTP 
ligands that showed binding for each protein are mentioned in the last column. The four proteins belonging to 
the hypothetical category are shown in bold-face.
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Discussion
In this work, we have sought to carry out a genome-wide survey so as to comprehensively identify a set of NTP 
binding proteins in M.tb. We predict that as many as 1,768 proteins coded in the M.tb genome would be capable 
of binding NTP and possibly constitute the NTPome, of which 72% are predicted to be ATP binding proteins. It 
was encouraging to see that most of the proteins that are bound to NTP ligands in the PDB database were cor-
rectly identified by our method, serving as positive controls.

Comparison of protein sequences forms an integral component of functional characterization of many pro-
teins. There are a number of tools for sequence and whole-fold level comparison, which provides useful insights 
on the function of proteins44–47. Given these, a question that comes up is whether it is necessary to compare bind-
ing sites to identify ATP binding proteins in a given genome. The three-dimensional geometry and chemistry at 
the binding site of a protein generates its capability to recognize its cognate ligand, which is a prerequisite for all 
further functions in a number of proteins. The substructures at the functional sites in each protein, thus hold the 
key for its function. Although the sequence level classification relates the protein to a particular ancestry per-
forming a particular function, at the level of binding sites, it could perform a completely different function48,49. In 
two of our recent studies involving a) all NTP binding proteins in PDB35, and b) sialic acid binding proteins36, we 
have found that a number of proteins that bind ATP share similarities in their binding sites, but do not share any 
similarity in their sequences or structural folds, clearly forming examples of convergent evolution. Another exam-
ple, L-alanine dehydrogenase Ald (Rv2780), has no detectable sequence-level similarity to a known ATP-binding 
protein and hence is missed by sequence-based searches, but has a sub-structural motif that we could clearly link 
to ATP binding, and validate by DLAC as shown in Fig. 3. This protein has also been recently studied using X-ray 
crystallography and demonstrated to bind to ATP by us50 (PDB code:4LMP, to be published). To illustrate the 
importance of the surveying at the level of binding site structures, we asked how many of these would be identi-
fied by a sequence search alone. A search for NTP binding proteins in the tuberculist database results in identi-
fying 410 proteins, simply based on the known annotations. Using sequence motifs such as the Walker motif as 
the query, again a sequence-based search in PROSITE51 for the motif results in identifying 161 proteins, of which 
many are of the same family. Put together, they identify only a portion of the NTPome.

Although other tools like NsitePred and ATPint that are available for nucleotide-binding prediction in pro-
teins show comparable results for NTP predictions for some proteins like Rv1626, Rv0350, Rv3457c, and Rv3285, 
our method of site-based comparison and alignment served as a better tool to capture similarities for proteins 
like Rv0079, Rv1173, Rv2761c, and many others. Existing tools for identifying similarities at the binding sites 
like ProBis52 and SitesBase53 failed to capture the similarities for some of the top-ranking hits in our study, and 
also, for some proteins like Rv1379, and Rv1843c which are reported in literature to be NTP binding. Thus, the 
site-based approach as used in our study was not only able to capture similarities in these different example 
proteins, which are not detected by sequence-based methods, but also outperformed the existing sub-structural 
comparison tools in many cases.

In the recent years, chemical proteomics approaches have been developed which have identified a number 
of ATP binding proteins. Each method has its strengths and limitations based on the technology being used. 
Comparison of the lists of ATP binding proteins in M.tb detected by the chemical proteomics, activity-based 
probe, and desthiobiotin-ATP probe indicate that only a small fraction (14.5%) is common among them. This 
is clearly attributed to the detection range, limits and sensitivity. These limitations make it important not only 
to explore multiple experimental approaches but also computational approaches as an independent tool for 
genome-wide fishing. Computational methods based on binding site structures have the additional advantage 
of providing the list of residues, the exact location of the binding sites as well as an explanation of why the pro-
tein has such a capability. A limitation of the binding site-based methods however, is that they can detect NTP 
sites, only if a similar site is structurally characterized in some protein or the other. It is possible that some more 
structural motifs may be present in the proteins yet to be characterized. This in fact explains why some proteins 
identified by the chemical proteomics approaches are missed by our method. The number of these however is very 
small in comparison to the number of those that these methods have detected.

The functional insights provided by our study can be broadly classified into the following categories: (a) first 
clues for functional annotation, (b) adding high resolution detail to a known annotation, (c) detection of multiple 
binding sites in the same protein, indicative of allosteric regulation, and (d) suggesting ATP-motif based drug 
discovery for already known drug targets and other potential drug targets. The following examples illustrate these 
scenarios.

An important aspect of the annotation from our study is to provide first clues and assign functional asso-
ciations to the proteins of unknown function, and proteins arising from the Structural Genomics con-
sortium initiatives. In addition to the 4 hypothetical proteins that are experimentally shown to bind NTP 
ligands by us, an indirect evidence for Rv1626, for example, that this protein has a proposed annotation of 
phosphorylation-dependent transcriptional antitermination regulator lends vital support for our identification54.

Further, proteins like Rv0092, Rv1238, Rv1310, and Rv0342, to name a few, are identified to be NTP binding 
from our structure-based studies, for which, a sequence level of tuberculist annotation and experimental evidence 
exists for NTP binding by these proteins9,55–59. However, these proteins lack an experimentally solved structure, 
and hence, our study could provide major clues on the possible mode of NTP binding with the precise location 
of the binding with detailed residue information. Supplementary text A provides examples of few more proteins 
for which experimental evidence is available in literature. The prediction by us, in these cases, has not only led to 
the identification of an NTP-pocket in these proteins, but also, predicted the correct ligands for which an exper-
imental support is available.

The function annotation in the NTPome can be potentially used for understanding structural basis of allostery 
in proteins, and their regulation by small-molecule ligands. Examples of function annotation in allosteric pro-
teins are described in supplementary text B. Examples of proteins Rv1017c (prsA), Rv1098c (fum), Rv3676 (crp), 
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Rv0998, Rv2996c (serA) and Rv3710 (leuA) are discussed with two possibilities of a) identifying a new additional 
location on the known allosteric protein, and b) suggesting a possible new allosteric modulator for the known 
allosteric protein.

A number of proteins in the NTPome are either known or are potential drug targets. For example, arab-
inosyltransferase (EmbC)60, ddla21,22, gyrA gyrB61, rpoB62, and ATP synthase18 all contain ATP binding sites. 
Identification of these sites and the type of motif in drug targets facilitate structure based lead discovery and 
lead optimization in cases where some candidate drugs are already known to bind at that site. In other cases, 
this may provide additional locations in the protein that may facilitate alternate target sites. From our previous 
work of identifying high-confidence drug targets in a multi-level, multi-scale target identification pipeline called 
targetTB63, 451 high-confidence drug target predictions were made, of which we note that 305 are in the current 
NTPome list.

In conclusion, we have identified 1,768 proteins in M.tb, which amounts to as much as 43% of the proteome, 
have the potential to bind nucleoside triphosphates. Using a sensitive sub-structural matching approach, we 
establish the superiority of site-based annotations over the sequence and whole fold based methods. We identify 
NTP binding in 294 proteins listed in the hypothetical and unknown function category. Using a chemical pro-
teomics technique, we validate 47 proteins to be NTP binding, of which 4 are hypotheticals. As the rationale for 
understanding the binding of NTP in the different proteins is sub-structure based, we also provide useful insights 
on the binding mode of the ligand with the precise list of pocket locations. Our approach is generic and can be 
applied to studying other organisms as well, if structural models are available. To the best of our knowledge, this 
is a first study to report a genome-wide survey of NTP binding sites based on binding site sub-structures in M.tb 
or in any other species.

Methods
Data used in the study: NTP structural motifs and the M.tb pocketome. In a recent study in the 
laboratory, all known NTP binding sites from PDB, corresponding to 4,766 proteins (PDB deposition: as of May 
2016) were analyzed, and grouped into 27 site-types through a structural bioinformatics approach, and site sig-
natures or structural motifs were derived for each site-type35. The derived motifs were also determined to be 
specific towards NTP recognition. Each motif was used individually to query the M.tb pocketome, which is a 
dataset of 13,858 pockets, derived as previously described64. To obtain all the putative small-molecule binding 

Figure 4. Pair-wise alignments of 15 pairs of proteins that were successfully tested for NTP binding using 
DLAC technique are shown. It has to be noted that the two proteins in a pair are not closely related by their 
sequences, but share a significant similarity at their binding sites. In all panels, the reference NTP motif is shown 
as red sticks and the aligned pocket residues of M.tb protein are shown in blue sticks with the ligand shown in 
ball and stick representation colored by atom type. With this information, we can also get more details on the 
possible mode of NTP binding in these proteins along with the exact locations on the protein surface defined by 
a set of pocket residues.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7: 12489  | DOI:10.1038/s41598-017-12471-8

pockets in M.tb, a structural modeling of the M.tb proteome was required at the first step which was carried out in 
a previous study. From this study, structural models for 2,877 proteins including 324 crystal structures and 2,737 
comparative models were available which accounted for 70% of the total proteome. The model building exercise 
for proteins was carried out in such a way that it is independent of whether a protein has an experimentally 

Figure 5. (A) A Venn-diagram representation showing the common number of proteins that have been 
identified by our study in comparison with other studies. In total, 1768 proteins were identified for NTP 
binding, out of which 218 are common to 317 proteins from Ansong et al. 134 out of 176 from Wolfe et al. 
177 out of 245 from PATRIC DB and 87 out of 123 from TBDB. While Ansong et al. and Wolfe et al. are 
experimental based studies, TBDB and PATRIC databases are computational based studies. (B) Table showing 
an all-vs-all comparison of our predicted list of 1768 in the NTPome with the 4 different comparator groups. 
The number in each box indicates the number of common proteins identified between the pair.

Sl. no RvID Protein Name PMSmax PMSmin Ligands

1 Rv0674 Conserved hypothetical protein 0.41 0.82 ATP, GTP

2 Rv0813c Conserved protein 0.49 0.83 ATP

3 Rv1340 Probable ribonuclease RphA (RNase PH) (tRNA nucleotidyltransferase) 0.58 0.76 TTP

4 Rv1626 Probable two-component system transcriptional regulator regulatory proteins 0.51 0.89 ATP, GTP

5 Rv1825 Conserved protein 0.46 0.82 UDP

6 Rv1873 Conserved hypothetical protein 0.48 0.78 ATP

7 Rv2074 Possible pyridoxamine 5′-phosphate oxidase (PNP/PMP oxidase) 
(pyridoxinephosphate oxidase) (PNPOX) (pyridoxine 5′-phosphate oxidase) 0.52 0.79 TTP, UDP

8 Rv2717c Conserved protein 0.41 0.79 GTP, ATP

Table 2. List of proteins that belong to Structural Genomics initiatives that were identified in the NTPome. The 
binding site similarity scores of the individual proteins with their respective query NTP motif are also shown 
along with the ligand(s) matched.
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solved structure already deposited in the PDB or not. For those proteins which already had experimentally solved 
structures in PDB, it was compared whether our generated model was able to reproduce the structural param-
eters of the solved structure. This step resulted in obtaining all the structural models accurately for the proteins 
that were already deposited in PDB with exact protein length, minimal RMSD and favorable stereochemical 
properties. This served as the first level of confidence and accuracy of the generated models. For all the other 
models generated for which an experimentally solved structure was not available, it was checked that they fulfill 
all the structure verification methods including secondary structure compatibility, statistical potential and other 
stereochemical properties. Thus, with these high-confidence structural models in first hand, we generated the 
M.tb pocketome. For this, all putative small-molecule binding pockets were identified based on a consensus 
of three different algorithms; PocketDepth30 (geometry-based), LigSite65 (evolutionary-based), and SiteHound66 
(energy-based). Thus, a pocket was considered only if it seen identified by all the three different methods, which 
led to an overall of 13,858 high-confidence pockets25,64, which was used as the M.tb pocketome for searching for 
the NTPome.

Binding site comparison and alignments. The binding sites were compared in an all-vs-all manner 
by using an in-house algorithm for binding site similarity called PocketMatch32. The algorithm captures chem-
istry and geometrical shape of the binding site. Each binding site is represented by 90 lists of sorted distances, 
and subsequently aligned incrementally to obtain a similarity score. This score is called the PocketMatch score 
(PMS), which is scaled between 0 and 1, where 1 indicates identity. We have previously shown that, a score of 
PMSmax > 0.4 indicates biologically meaningful similarities, since it implies significant similarity in the whole 
site31,34. An added advantage of using PocketMatch is that it also reports a local score called the PMSmin score 
which reflects a local sub-structural match, when part of the site in the hit matches with a part or the whole site 
in the query, which is also utilized as a combination along with PMSmax in this study. ATP binding sites are 
large in some crystallographically determined ATP sites which have about 25 to 30 residues in them, while some 
other proteins in the same superfamily contain only 12 to 18 residues. It is thus important to consider partial 
similarities. PMSmin indeed served this purpose and identified cases where there was a significant similarity in 
a portion of the pocket, typically encountered in sites of dissimilar sizes. A high PMSmax score implied similarly 
sized pockets containing similarly positioned residues of similar chemical properties, while high PMSmin scores 
indicate significant similarity in part of the sites. This happens often when the sizes of the two pockets in the pair 
being studied are unequal. Thus, a combination of PMSmax and PMSmin serves as a useful scheme to identify 
similarities in such cases. We chose a PMSmax cutoff of 0.5 and a minimum number of 5 matched residues, to 
consider two binding sites as similar. The significance of using PMSmin scores for identifying similar NTP bind-
ing sites is shown in section 2.5.

Binding site alignments at the structural level were performed using another in-house algorithm called 
PocketAlign33. Pymol (version 1.2r1 from www.pymol.org) was used for structural analyses and generating 

Sl. No Fold name RvID Protein name

1 6-phosphogluconate dehydrogenase 
C-terminal domain-like Rv2573 Function unknown

2 Cytochrome P450 Rv3059/Rv0327c Probable cytochrome P450/ Possible cytochrome P450 135A1 
Cyp135A1

3 LolA-like prokaryotic lipoproteins and 
lipoprotein localization factors Rv1270c Lipoprotein LprA

4 Domain of alpha and beta subunits of F1 
ATP synthase-like Rv1293 Diaminopimelate decarboxylase LysA (DAP decarboxylase)

5 Amidase signature (AS) enzymes Rv3375 Probable amidase AmiD (acylamidase) (acylase)

6 ClpP/crotonase Rv2486 Probable enoyl-CoA hydratase EchA14 (enoyl hydrase)

7 Rhodanese/Cell cycle control phosphatase Rv2291 Probable thiosulfate sulfurtransferase SseB

8 alpha/beta-Hydrolases Rv1683 Possible bifunctional enzyme; long-chain acyl-CoA synthase and 
lipase.

9 Chelatase-like Rv0265c Probable periplasmic iron-transport lipoprotein

10 Profilin-like Rv1354c Conserved hypothetical protein

11 Pentein, beta/alpha-propeller Rv2323c Function unknown

12 Nitrite and sulphite reductase 4Fe-4S 
domain-like Rv2391 Ferredoxin-dependent sulfite reductase SirA

13 Peptide deformylase Rv0429c Probable polypeptide deformylase Def (PDF)

14 FAH Rv3536c Probable hydratase

15 Thioesterase/thiol ester dehydrase-
isomerase Rv1532c Conserved hypothetical protein

16 Zincin-like Rv2367c Conserved hypothetical protein

17 MFS general substrate transporter Rv3331 Probable sugar-transport integral membrane protein SugI

18 Rhomboid-like Rv1337 Probable integral membrane protein

19 MetI-like Rv0929 Phosphate-transport integral membrane ABC transporter PstC2

20 Ketopantoate reductase PanE Rv2573 Conserved hypothetical protein

Table 3. 20 example folds in M.tb for fold-site associations that can be implicated for NTP binding.

http://www.pymol.org
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images. Sequence-based ATP site prediction tools NsitePred67 and ATPint68 were used for comparing with our 
site-based NTP predictions. Tuberculist69 database was used for comparing the annotations, and KEGG map-
per70–72 was used for highlighting the pathway enrichment.

Dye-ligand affinity chromatography. Experimental testing of ATP binding of M.tb proteins was carried 
out using a DLAC protocol, as described earlier by one of our laboratories (Kim et al.40, Kim et al.41 and Roberts  
et al.50). Briefly, this involves elution of native proteins of M.tb cell extract based on ligand-affinity chromatog-
raphy followed by 2D-gel electrophoresis and mass-spectrometric characterization. An independent nucleo-
tide interaction analysis using expressed and purified proteins was also carried out in selected cases. Proteins 
from a crude cytosolic extract were bound to a resin matrix and selectively eluted out using nucleotide ligands. 
Independently, specific protein-ligand interactions for selected proteins were examined using purified recombi-
nant proteins. A detailed description of the methods is provided in Supplementary material as supplementary 
methods.

In brief, 100 mg of crude cytosolic extract of M.tb H37Rv was adsorbed to a 10 ml Cibacron F3GA Blue affin-
ity column. A column buffer (CB) containing 50 mM KH2PO4 pH 7.5, 1 mM MgCl2 and 2 mM DTT was used 
to wash the column extensively to remove the low-affinity and unbound proteins before eluting with ligands. It 
was seen that approximately 40% of the whole cytosolic extract was bound to the resin, which was determined 
by a standard Bradford assay. The solubilized protein was recovered, and a ligand-specific elution, which was 
applied in series, was carried out using 5 ml of each of the ligands with a wash with CB between each elution. 
Peak ligand fractions were pooled and the proteins were precipitated by adding 100% iced trichloro acetic acid 
(TCA). Precipitated proteins were recovered by centrifugation and the recovered proteins were fractionated by 
2D-SDS-PAGE and mass spectrometry. The specificity of ligand interactions was further examined by testing the 
elution of purified recombinant proteins from the dye-resin by each of the individual ligands tested.

Data availability statement. Data and methods used in this study can be accessed freely from their origi-
nal databases described in the methods section.

References
 1. Schulz, G. E. Binding of nucleotides by proteins. Curr. Biol. 2, 81 (1992).
 2. Vetter, I. R. & Wittinghofer, A. Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer. Q. Rev. 

Biophys. 32, 1–56 (1999).
 3. Yegutkin, G. G. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. 

Biochim. Biophys. Acta 1783, 673–694 (2008).
 4. Dzeja, P. P. & Terzic, A. Phosphotransfer networks and cellular energetics. J. Exp. Biol. 206, 2039–2047 (2003).
 5. Lu, S. et al. The Structural Basis of ATP as an Allosteric Modulator. PLOS Comput. Biol. 10, e1003831 (2014).
 6. Huang, Z. et al. ASDv2.0: updated content and novel features focusing on allosteric regulation. Nucleic Acids Res. 42, D510–D516 (2014).
 7. Chène, P. ATPases as drug targets: learning from their structure. Nat. Rev. Drug Discov. 1, 665–673 (2002).
 8. Ansong, C. et al. Identification of Widespread Adenosine Nucleotide Binding in Mycobacterium tuberculosis. Chem. Biol. 20, 

123–133 (2013).
 9. Wolfe, L. M. et al. A Chemical Proteomics Approach to Profiling the ATP-binding Proteome of Mycobacterium tuberculosis. Mol. 

Cell. Proteomics MCP 12, 1644–1660 (2013).
 10. Qiu, H. & Wang, Y. Probing adenosine nucleotide-binding proteins with an affinity-labeled nucleotide probe and mass spectrometry. 

Anal. Chem. 79, 5547–5556 (2007).
 11. Raviglione, M. et al. Scaling up interventions to achieve global tuberculosis control: progress and new developments. The Lancet 379, 

1902–1913 (2012).
 12. Manjunatha, U. H. & Smith, P. W. Perspective: Challenges and opportunities in TB drug discovery from phenotypic screening. 

Bioorg. Med. Chem. 23, 5087–5097 (2015).
 13. Nguta, J. M., Appiah-Opong, R., Nyarko, A. K., Yeboah-Manu, D. & Addo, P. G. A. Current perspectives in drug discovery against 

tuberculosis from natural products. Int. J. Mycobacteriology 4, 165–183 (2015).
 14. Ioerger, T. R. et al. Identification of New Drug Targets and Resistance Mechanisms in Mycobacterium tuberculosis. PLoS ONE 8, 

e75245 (2013).
 15. Lechartier, B., Rybniker, J., Zumla, A. & Cole, S. T. Tuberculosis drug discovery in the post-post-genomic era. EMBO Mol. Med. 6, 

158–168 (2014).
 16. Ekins, S., Freundlich, J. S., Choi, I., Sarker, M. & Talcott, C. Computational databases, pathway and cheminformatics tools for 

tuberculosis drug discovery. Trends Microbiol. 19, 65–74 (2011).
 17. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).
 18. Lakshmanan, M. & Xavier, A. S. Bedaquiline – The first ATP synthase inhibitor against multi drug resistant tuberculosis. J. Young 

Pharm. JYP 5, 112–115 (2013).
 19. Lee, Y.-V., Wahab, H. A. & Choong, Y. S. Potential Inhibitors for Isocitrate Lyase of Mycobacterium tuberculosis and Non-M. 

tuberculosis: A Summary. BioMed Res. Int. 2015, e895453 (2015).
 20. Chopra, P., Meena, L. S. & Singh, Y. New drug targets for Mycobacterium tuberculosis. Indian J. Med. Res. 117, 1–9 (2003).
 21. Bruning, J. B., Murillo, A. C., Chacon, O., Barletta, R. G. & Sacchettini, J. C. Structure of the Mycobacterium tuberculosis d-Alanine:d-

Alanine Ligase, a Target of the Antituberculosis Drug d-Cycloserine. Antimicrob. Agents Chemother. 55, 291–301 (2011).
 22. Reynolds, R. C. et al. High Throughput Screening of a Library Based on Kinase Inhibitor Scaffolds Against Mycobacterium 

Tuberculosis H37Rv. Tuberc. Edinb. Scotl. 92, 72–83 (2012).
 23. Christopherson, R. I., Lyons, S. D. & Wilson, P. K. Inhibitors of de Novo Nucleotide Biosynthesis as Drugs. Acc. Chem. Res. 35, 

961–971 (2002).
 24. Adachi, J. et al. Proteome-Wide Discovery of Unknown ATP-Binding Proteins and Kinase Inhibitor Target Proteins Using an ATP 

Probe. J. Proteome Res. 13, 5461–5470 (2014).
 25. Anand, P. et al. Structural Annotation of Mycobacterium tuberculosis Proteome. PLOS ONE 6, e27044 (2011).
 26. Metri, R. et al. SInCRe—structural interactome computational resource for Mycobacterium tuberculosis. Database 2015, bav060 (2015).
 27. Csermely, P., Korcsmáros, T., Kiss, H. J. M., London, G. & Nussinov, R. Structure and dynamics of molecular networks: A novel 

paradigm of drug discovery. Pharmacol. Ther. 138, 333–408 (2013).
 28. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, 

myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982).



www.nature.com/scientificreports/

13Scientific RepoRts | 7: 12489  | DOI:10.1038/s41598-017-12471-8

 29. Saraste, M., Sibbald, P. R. & Wittinghofer, A. The P-loop–a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 
15, 430–434 (1990).

 30. Kalidas, Y. & Chandra, N. PocketDepth: a new depth based algorithm for identification of ligand binding sites in proteins. J. Struct. 
Biol. 161, 31–42 (2008).

 31. Yeturu, K. & Chandra, N. PocketMatch: A new algorithm to compare binding sites in protein structures. BMC Bioinformatics 9, 543 
(2008).

 32. Nagarajan, D. & Chandra, N. PocketMatch (version 2.0): A parallel algorithm for the detection of structural similarities between 
protein ligand binding-sites. In 2013 National Conference on Parallel Computing Technologies (PARCOMPTECH) 1–6 doi:https://doi.
org/10.1109/ParCompTech.2013.6621397 (2013).

 33. Yeturu, K. & Chandra, N. PocketAlign a novel algorithm for aligning binding sites in protein structures. J. Chem. Inf. Model. 51, 
1725–1736 (2011).

 34. Anand, P., Yeturu, K. & Chandra, N. PocketAnnotate: towards site-based function annotation. Nucleic Acids Res. 40, W400–W408 
(2012).

 35. Bhagavat, R., Srinivasan, N. & Chandra, N. Deciphering common recognition principles of nucleoside mono/di/and tri-phosphates 
binding in diverse proteins via structural matching of their binding sites: Nucleoside mono/di and tri-phosphate (NTP) binding 
motifs across diverse proteins. Proteins Struct. Funct. Bioinforma. https://doi.org/10.1002/prot.25328 (2017).

 36. Bhagavat, R. & Chandra, N. Common recognition principles across diverse sequence and structural families of sialic acid binding 
proteins. Glycobiology 24, 5–16 (2014).

 37. Ramachandraiah, G. & Chandra, N. R. Sequence and structural determinants of mannose recognition. Proteins 39, 358–364 (2000).
 38. Prabu, J. R. R., Vetriselvi, Chandra, Nagasuma. Carbohydrate-based drug design: Recognition fingerprints and their use in lead 

identification. 2006 45A.
 39. Berman, H. M. et al. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 58, 899–907 (2002).
 40. Kim, H. et al. Enhancement of crystallization with nucleotide ligands identified by dye-ligand affinity chromatography. J. Struct. 

Funct. Genomics 13, 71–79 (2012).
 41. Kim, C.-Y. et al. Analysis of nucleoside-binding proteins by ligand-specific elution from dye resin: application to Mycobacterium 

tuberculosis aldehyde dehydrogenases. J. Struct. Funct. Genomics 10, 291–301 (2009).
 42. Gillespie, J. J. et al. PATRIC: the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infect. 

Immun. 79, 4286–4298 (2011).
 43. Galagan, J. E. et al. TBdatabase 2010: Overview and update. Tuberculosis 90, 225–235 (2010).
 44. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
 45. Holm, L. & Park, J. DaliLite workbench for protein structure comparison. Bioinforma. Oxf. Engl. 16, 566–567 (2000).
 46. Konagurthu, A. S., Whisstock, J. C., Stuckey, P. J. & Lesk, A. M. MUSTANG: a multiple structural alignment algorithm. Proteins 64, 

(559–574 (2006).
 47. Shatsky, M., Nussinov, R. & Wolfson, H. J. A method for simultaneous alignment of multiple protein structures. Proteins 56, 143–156 

(2004).
 48. Kosloff, M. & Kolodny, R. Sequence-similar, structure-dissimilar protein pairs in the PDB. Proteins 71, 891–902 (2008).
 49. Joshi, T. & Xu, D. Quantitative assessment of relationship between sequence similarity and function similarity. BMC Genomics 8, 222 

(2007).
 50. Roberts, J., Cecilia, W., Terwilliger, T. & Kim, C.-Y. High-throughput Analysis of Nucleoside and Nucleotide-binding by Proteins. 

Systems Chemistry (2008).
 51. Hulo, N. et al. The PROSITE database. Nucleic Acids Res. 34, D227–D230 (2006).
 52. Konc, J. & Janežič, D. ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment. 

Bioinformatics 26, 1160–1168 (2010).
 53. Gold, N. D. & Jackson, R. M. SitesBase: a database for structure-based protein-ligand binding site comparisons. Nucleic Acids Res. 

34, D231–234 (2006).
 54. Morth, J. P., Feng, V., Perry, L. J., Svergun, D. I. & Tucker, P. A. The crystal and solution structure of a putative transcriptional 

antiterminator from Mycobacterium tuberculosis. Struct. Lond. Engl. 1993(12), 1595–1605 (2004).
 55. Colangeli, R. et al. The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance 

to both isoniazid and ethambutol. Mol. Microbiol. 55, 1829–1840 (2005).
 56. Cho, S. H., Goodlett, D. & Franzblau, S. ICAT-based comparative proteomic analysis of non-replicating persistent Mycobacterium 

tuberculosis. Tuberc. Edinb. Scotl. 86, 445–460 (2006).
 57. Padilla-Benavides, T., Long, J. E., Raimunda, D., Sassetti, C. M. & Argüello, J. M. A novel P(1B)-type Mn2+ -transporting ATPase is 

required for secreted protein metallation in mycobacteria. J. Biol. Chem. 288, 11334–11347 (2013).
 58. Lamont, E. A., Xu, W. W. & Sreevatsan, S. Host-Mycobacterium avium subsp. paratuberculosis interactome reveals a novel iron 

assimilation mechanism linked to nitric oxide stress during early infection. BMC Genomics 14, 694 (2013).
 59. Braibant, M., Gilot, P. & Content, J. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS 

Microbiol. Rev. 24, 449–467 (2000).
 60. Goude, R., Amin, A. G., Chatterjee, D. & Parish, T. The arabinosyltransferase EmbC is inhibited by ethambutol in Mycobacterium 

tuberculosis. Antimicrob. Agents Chemother. 53, 4138–4146 (2009).
 61. Mdluli, K. & Ma, Z. Mycobacterium tuberculosis DNA gyrase as a target for drug discovery. Infect. Disord. Drug Targets 7, 159–168 

(2007).
 62. Jamieson, F. B. et al. Profiling of rpoB Mutations and MICs for Rifampin and Rifabutin in Mycobacterium tuberculosis. J. Clin. 

Microbiol. 52, 2157–2162 (2014).
 63. Raman, K., Yeturu, K. & Chandra, N. targetTB: A target identification pipeline for Mycobacterium tuberculosis through an 

interactome, reactome and genome-scale structural analysis. BMC Syst. Biol. 2, 109 (2008).
 64. Anand, P. & Chandra, N. Characterizing the pocketome of Mycobacterium tuberculosis and application in rationalizing 

polypharmacological target selection. Sci. Rep. 4, 6356 (2014).
 65. Hendlich, M., Rippmann, F. & Barnickel, G. LIGSITE: automatic and efficient detection of potential small molecule-binding sites in 

proteins. J. Mol. Graph. Model. 15, 359–363, 389 (1997).
 66. Hernandez, M., Ghersi, D. & Sanchez, R. SITEHOUND-web: a server for ligand binding site identification in protein structures. 

Nucleic Acids Res. 37, W413–416 (2009).
 67. Chen, K. & Mizianty, M. J. & Kurgan, L. Prediction and analysis of nucleotide-binding residues using sequence and sequence-

derived structural descriptors. Bioinforma. Oxf. Engl. 28, 331–341 (2012).
 68. Chauhan, J. S., Mishra, N. K. & Raghava, G. P. Identification of ATP binding residues of a protein from its primary sequence. BMC 

Bioinformatics 10, 434 (2009).
 69. Lew, J. M., Kapopoulou, A., Jones, L. M. & Cole, S. T. TubercuList–10 years after. Tuberc. Edinb. Scotl 91, 1–7 (2011).
 70. Kanehisa, M. et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42, D199–D205 

(2014).
 71. Kanehisa, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, 277D–280 (2004).
 72. Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

http://dx.doi.org/10.1109/ParCompTech.2013.6621397
http://dx.doi.org/10.1109/ParCompTech.2013.6621397
http://dx.doi.org/10.1002/prot.25328


www.nature.com/scientificreports/

1 4Scientific RepoRts | 7: 12489  | DOI:10.1038/s41598-017-12471-8

Acknowledgements
The financial support from DBT is gratefully acknowledged.

Author Contributions
R.B. carried out the computational analyses of identifying the NTPome, under the guidance of N.S.C. and N.S. 
H.B.K. carried out the proteomics experiments to generate the binding data, under the guidance of C.Y.K. and 
T.T. D.M. assisted with computational analyses. N.S.C. conceptualized and closely supervised the project. R.B., 
N.S.C., C.Y.K. and N.S. wrote the manuscript. All authors have read and approved the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-12471-8.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-12471-8
http://creativecommons.org/licenses/by/4.0/

	A genome-wide structure-based survey of nucleotide binding proteins in M. tuberculosis
	Results
	Binding sites comparison and identification of the ‘NTPome’. 
	Distribution of protein classes in the NTPome and preference of certain motifs. 
	Experimental testing of NTP binding for selected proteins. 
	Comparison with experimentally identified ATP binding proteins from literature. 
	Function annotation for the putative NTP binding proteins currently categorized as hypotheticals and are of unknown functio ...
	Identification of additional fold types for a possible NTP binding. 

	Discussion
	Methods
	Data used in the study: NTP structural motifs and the M.tb pocketome. 
	Binding site comparison and alignments. 
	Dye-ligand affinity chromatography. 
	Data availability statement. 

	Acknowledgements
	Figure 1 (A) Pie-chart showing the different tuberculist functional classes for M.
	Figure 2 Pair-wise superpositions for 15 pairs of proteins that fall under the category of hypotheticals.
	Figure 3 (A) 2D-gel image of M.
	Figure 4 Pair-wise alignments of 15 pairs of proteins that were successfully tested for NTP binding using DLAC technique are shown.
	Figure 5 (A) A Venn-diagram representation showing the common number of proteins that have been identified by our study in comparison with other studies.
	Table 1 showing the list of M.
	Table 2 List of proteins that belong to Structural Genomics initiatives that were identified in the NTPome.
	Table 3 20 example folds in M.




