16 research outputs found

    Lossless Decompression Accelerator for Embedded Processor with GUI

    No full text
    The development of the mobile industry brings about the demand for high-performance embedded systems in order to meet the requirement of user-centered application. Because of the limitation of memory resource, employing compressed data is efficient for an embedded system. However, the workload for data decompression causes an extreme bottleneck to the embedded processor. One of the ways to alleviate the bottleneck is to integrate a hardware accelerator along with the processor, constructing a system-on-chip (SoC) for the embedded system. In this paper, we propose a lossless decompression accelerator for an embedded processor, which supports LZ77 decompression and static Huffman decoding for an inflate algorithm. The accelerator is implemented on a field programmable gate array (FPGA) to verify the functional suitability and fabricated in a Samsung 65 nm complementary metal oxide semiconductor (CMOS) process. The performance of the accelerator is evaluated by the Canterbury corpus benchmark and achieved throughput up to 20.7 MB/s at 50 MHz system clock frequency

    Lossless Decompression Accelerator for Embedded Processor with GUI

    No full text
    The development of the mobile industry brings about the demand for high-performance embedded systems in order to meet the requirement of user-centered application. Because of the limitation of memory resource, employing compressed data is efficient for an embedded system. However, the workload for data decompression causes an extreme bottleneck to the embedded processor. One of the ways to alleviate the bottleneck is to integrate a hardware accelerator along with the processor, constructing a system-on-chip (SoC) for the embedded system. In this paper, we propose a lossless decompression accelerator for an embedded processor, which supports LZ77 decompression and static Huffman decoding for an inflate algorithm. The accelerator is implemented on a field programmable gate array (FPGA) to verify the functional suitability and fabricated in a Samsung 65 nm complementary metal oxide semiconductor (CMOS) process. The performance of the accelerator is evaluated by the Canterbury corpus benchmark and achieved throughput up to 20.7 MB/s at 50 MHz system clock frequency

    Development of Real-Time Maneuver Library Generation Technique for Implementing Tactical Maneuvers of Fixed-Wing Aircraft

    No full text
    This study develops the real-time maneuver library generation technique for performing aggressive maneuvers of fixed-wing aircraft. Firstly, the general maneuver libraries are defined, and then 7th-order polynomials are used to create the maneuver libraries. The attitude command attitude hold (ACAH) system, the rate command rate hold (RCRH) system, and the speed command speed hold (SCSH) system using the proportional-integral-derivative (PID) control technique are designed to minimize the complexity of the flight control system (FCS) and to reduce the weight and volume of the payload. Moreover, the FCS is used for implementing tactical maneuvers. Finally, flight simulations are implemented for the longitudinal loop and Immelmann-turn maneuvers to check the usefulness of the proposed maneuver library generation technique. This study can affect the development of flight techniques for aircraft tactical maneuvers and the modification of air force operational manuals

    Orbit Determination Using Angle-Only Data for MEO & GEO Satellite and Obsolete

    No full text
    We used an optical observation system with a 0.6m wide-field telescope and 5 computers system in KASI (Korean Astronomy and Space Science Institute) for satellite optical observation. Optical data have errors that are caused by targeting, expose start time and end-point determination. Gauss method for initial orbit determination was tested using angle-only data simulated by KODAS. And suitable time span is confirmed for result which has minimum errors. Initial orbit determination results are proved that optical observation system in KASI is possible satellite tracking for a short period. And also through differential correction, initial orbit determination results are improved

    Longitudinal profiling of oligomeric A beta in human nasal discharge reflecting cognitive decline in probable Alzheimer's disease

    No full text
    Despite clinical evidence indicating a close relationship between olfactory dysfunction and Alzheimer’s disease (AD), further investigations are warranted to determine the diagnostic potential of nasal surrogate biomarkers for AD. In this study, we first identified soluble amyloid-β (Aβ), the key biomarker of AD, in patient nasal discharge using proteomic analysis. Then, we profiled the significant differences in Aβ oligomers level between patient groups with mild or moderate cognitive decline (n = 39) and an age-matched normal control group (n = 21) by immunoblot analysis and comparing the levels of Aβ by a self-standard method with interdigitated microelectrode sensor systems. All subjects received the Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR), and the Global Deterioration Scale (GDS) for grouping. We observed higher levels of Aβ oligomers in probable AD subjects with lower MMSE, higher CDR, and higher GDS compared to the normal control group. Moreover, mild and moderate subject groups could be distinguished based on the increased composition of two oligomers, 12-mer Aβ*56 and 15-mer AβO, respectively. The longitudinal cohort study confirmed that the cognitive decline of mild AD patients with high nasal discharge Aβ*56 levels advanced to the moderate stage within three years. Our clinical evidence strongly supports the view that the presence of oligomeric Aβ proteins in nasal discharge is a potential surrogate biomarker of AD and an indicator of cognitive decline progression. © 2020, The Author(s).1
    corecore