1,802 research outputs found

    Selection rules in three-body B decay from factorization

    Get PDF
    Extending the dynamics underlying the factorization calculation of two-body decays, we propose simple selection rules for nonresonant three-body B decays. We predict, for instance, that in the Dalitz plot of B^0-->D^0-bar\pi^+\pi^-, practically no events should be found in the corner of E(\pi^+) < \Lambda_{QCD} as compared with the corner of E(\pi^-) < \Lambda_{QCD}. We also predict that there should be very few three-body decay events with a soft meson resonance and two energetic mesons or meson resonances. The selection rules are quite different from the soft pion theorem, since they apply to different kinematical regions. For B^0 -->D^0-bar\pi^+\pi^-, the latter predicts that the decay matrix element vanishes in the zero-four-momentum limit of \pi^+ instead of \pi^-. Since this marked difference from the soft pion theorem is directly related to the issue of short-distance QCD dominance in the FSI of two-body B decays, experimental test of the selection rules will shed light on strong interaction dynamics of B decay.Comment: 12 pages in REVTEX including 3 eps figure

    Giant Multipole Resonances in the (3-He,t) Reaction at 200 MeV

    Get PDF
    This work was supported by the National Science Foundation Grants NSF PHY 78-22774 A03, NSF PHY 81-14339, and by Indiana Universit

    Failure due to fatigue in fiber bundles and solids

    Get PDF
    We consider first a homogeneous fiber bundle model where all the fibers have got the same stress threshold beyond which all fail simultaneously in absence of noise. At finite noise, the bundle acquires a fatigue behavior due to the noise-induced failure probability at any stress. We solve this dynamics of failure analytically and show that the average failure time of the bundle decreases exponentially as the stress increases. We also determine the avalanche size distribution during such failure and find a power law decay. We compare this fatigue behavior with that obtained phenomenologically for the nucleation of Griffith cracks. Next we study numerically the fatigue behavior of random fiber bundles having simple distributions of individual fiber strengths, at stress less than the bundle's strength (beyond which it fails instantly). The average failure time is again seen to decrease exponentially as the stress increases and the avalanche size distribution shows similar power law decay. These results are also in broad agreement with experimental observations on fatigue in solids. We believe, these observations regarding the failure time are useful for quantum breakdown phenomena in disordered systems.Comment: 13 pages, 4 figures, figures added and the text is revise

    Massive vector trapping as a gauge boson on a brane

    Get PDF
    We propose a mechanism to trap massive vector fields as a photon on the Randall-Sundrum brane embedded in the five dimensional AdS space. This localization-mechanism of the photon is realized by considering a brane action, to which a quadratic potential of the bulk-vector fields is added. We also point out that this potential gives several constraints on the fluctuations of the vector fields in the bulk space.Comment: 11 pages, no figure, LaTe

    Neutrino masses from operator mixing

    Get PDF
    We show that in theories that reduce, at the Fermi scale, to an extension of the standard model with two doublets, there can be additional dimension five operators giving rise to neutrino masses. In particular there exists a singlet operator which can not generate neutrino masses at tree level but generates them through operator mixing. Under the assumption that only this operator appears at tree level we calculate the neutrino mass matrix. It has the Zee mass matrix structure and leads naturally to bimaximal mixing. However, the maximal mixing prediction for solar neutrinos is very sharp even when higher order corrections are considered. To allow for deviations from maximal mixing a fine tuning is needed in the neutrino mass matrix parameters. However, this fine tuning relates the departure from maximal mixing in solar neutrino oscillations with the neutrinoless double beta decay rate.Comment: 11 pages, 1 figure, revte

    A Pyramid Scheme for Particle Physics

    Full text link
    We introduce a new model, the Pyramid Scheme, of direct mediation of SUSY breaking, which is compatible with the idea of Cosmological SUSY Breaking (CSB). It uses the trinification scheme of grand unification and avoids problems with Landau poles in standard model gauge couplings. It also avoids problems, which have recently come to light, associated with rapid stellar cooling due to emission of the pseudo Nambu-Goldstone Boson (PNGB) of spontaneously broken hidden sector baryon number. With a certain pattern of R-symmetry breaking masses, a pattern more or less required by CSB, the Pyramid Scheme leads to a dark matter candidate that decays predominantly into leptons, with cross sections compatible with a variety of recent observations. The dark matter particle is not a thermal WIMP but a particle with new strong interactions, produced in the late decay of some other scalar, perhaps the superpartner of the QCD axion, with a reheat temperature in the TeV range. This is compatible with a variety of scenarios for baryogenesis, including some novel ones which exploit specific features of the Pyramid Scheme.Comment: JHEP Latex, 32 pages, 1 figur

    Bosonic Fields in the String-like Defect Model

    Get PDF
    We study localization of bosonic bulk fields on a string-like defect with codimension 2 in a general space-time dimension in detail. We show that in cases of spin 0 scalar and spin 1 vector fields there are an infinite number of massless Kaluza-Klein (KK) states which are degenerate with respect to the radial quantum number, but only the massless zero mode state among them is coupled to fermion on the string-like defect. It is also commented on interesting extensions of the model at hand to various directions such as 'little' superstring theory, conformal field theory and a supersymmetric construction.Comment: 17 pages, LaTex 2e, revised version (to appear in Phys. Rev. D

    Dynamics of the Compact, Ferromagnetic \nu=1 Edge

    Full text link
    We consider the edge dynamics of a compact, fully spin polarized state at filling factor ν=1\nu=1. We show that there are two sets of collective excitations localized near the edge: the much studied, gapless, edge magnetoplasmon but also an additional edge spin wave that splits off below the bulk spin wave continuum. We show that both of these excitations can soften at finite wave-vectors as the potential confining the system is softened, thereby leading to edge reconstruction by spin texture or charge density wave formation. We note that a commonly employed model of the edge confining potential is non-generic in that it systematically underestimates the texturing instability.Comment: 13 pages, 7 figures, Revte

    Gauge Fields, Fermions and Mass Gaps in 6D Brane Worlds

    Full text link
    We study fluctuations about axisymmetric warped brane solutions in 6D minimal gauged supergravity. Much of our analysis is general and could be applied to other scenarios. We focus on bulk sectors that could give rise to Standard Model gauge fields and charged matter. We reduce the dynamics to Schroedinger type equations plus physical boundary conditions, and obtain exact solutions for the Kaluza-Klein wave functions and discrete mass spectra. The power-law warping, as opposed to exponential in 5D, means that zero mode wave functions can be peaked on negative tension branes, but only at the price of localizing the whole Kaluza-Klein tower there. However, remarkably, the codimension two defects allow the Kaluza-Klein mass gap to remain finite even in the infinite volume limit. In principle, not only gravity, but Standard Model fields could `feel' the extent of large extra dimensions, and still be described by an effective 4D theory.Comment: 33 pages, 2 figures; typesetting problem fixed ({\o}replaced by \omega

    Spontaneous CP Violating Phase as the Phase in PMNS Matrix

    Full text link
    We study the possibility of identifying the CP violating phases in the PMNS mixing matrix in the lepton sector and also that in the CKM mixing matrix in the quark sector with the phase responsible for the spontaneous CP violation in the Higgs potential, and some implications. Since the phase in the CKM mixing matrix is determined by experimental data, the phase in the lepton sector is therefore also fixed. The mass matrix for neutrinos is constrained leading to constraints on the Jarlskog CP violating parameter JJ, and the effective mass for neutrinoless double beta decay. The Yukawa couplings are also constrained. Different ways of identifying the phases have different predictions for μ→eeeˉ\mu \to e e\bar e and τ→l1l2lˉ3\tau \to l_1 l_2 \bar l_3. Future experimental data can be used to distinguish different models.Comment: 16 pages, 3 figure
    • …
    corecore