10,392 research outputs found

    Duality Cascade and Oblique Phases in Non-Commutative Open String Theory

    Get PDF
    We investigate the complete phase diagram of the decoupled world-sheet theory of (P,Q) strings. These theories include 1+1 dimensional super Yang-Mills theory and non-commutative open string theory. We find that the system exhibits a rich fractal phase structure, including a cascade of alternating supergravity, gauge theory, and matrix string theory phases. The cascade proceeds via a series of SL(2,Z) S-duality transformations, and depends sensitively on P and Q. In particular, we find that the system may undergo multiple Hagedorn-type transitions as the temperature is varied.Comment: 21 pages, 4 figures, references adde

    Resonant Tunneling through double-bended Graphene Nanoribbons

    Full text link
    We investigate theoretically resonant tunneling through double-bended graphene nanoribbon structures, i.e., armchair-edged graphene nanoribbons (AGNRs) in between two semi-infinite zigzag graphene nanoribbon (ZGNR) leads. Our numerical results demonstrate that the resonant tunneling can be tuned dramatically by the Fermi energy and the length and/or widths of the AGNR for both the metallic and semiconductor-like AGNRs. The structure can also be use to control the valley polarization of the tunneling currents and could be useful for potential application in valleytronics devices.Comment: 4 pages, 4 figure

    Anomalous Rashba spin-orbit interaction in InAs/GaSb quantum wells

    Full text link
    We investigate theoretically the Rashba spin-orbit interaction in InAs/GaSb quantum wells(QWs). We find that the Rashba spin-splitting (RSS) depends sensitively on the thickness of the InAs layer. The RSS exhibits nonlinear behavior for narrow InAs/GaSb QWs and the oscillating feature for wide InAs/GaSb QWs. The nonlinear and oscillating behaviors arise from the weakened and enhanced interband coupling. The RSS also show asymmetric features respect to the direction of the external electric field.Comment: 3 pages, 4 figures. Appl. Phys. Lett. (in press

    Spin-dependent tunneling through a symmetric semiconductor barrier: the Dresselhaus effect

    Full text link
    Spin-dependent tunneling through a symmetric semiconductor barrier is studied including the k^3 Dresselhaus effect. The spin-dependent transmission of electron can be obtained analytically. By comparing with previous work(Phys. Rev. B 67. R201304 (2003) and Phys. Rev. Lett. 93. 056601 (2004)), it is shown that the spin polarization and interface current are changed significantly by including the off-diagonal elements in the current operator, and can be enhanced considerably by the Dresselhaus effect in the contact regions.Comment: 10 pages, 5 figures, to appear in PR

    Quantum pumping in graphene nanoribbons at resonant transmission

    Full text link
    Adiabatic quantum charge pumping in graphene nanoribbon double barrier structures with armchair and zigzag edges in the resonant transmission regime is analyzed. Using recursive Green's function method we numerically calculate the pumped charge for pumping contours encircling a resonance. We find that for armchair ribbons the whole resonance line contributes to the pumping of a single electron (ignoring double spin degeneracy) per cycle through the device. The case of zigzag ribbons is more interesting due to zero-conductance resonances. These resonances separate the whole resonance line into several parts, each of which corresponds to the pumping of a single electron through the device. Moreover, in contrast to armchair ribbons, one electron can be pumped from the left lead to the right one or backwards. The current direction depends on the particular part of the resonance line encircled by the pumping contour.Comment: 6 pages, 5 figures. This is an author-created, un-copyedited version of an article accepted for publication in EPL. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at 10.1209/0295-5075/92/4701

    Unconventional Planar Hall Effect in Exchange-Coupled Topological Insulator-Ferromagnetic Insulator Heterostructures

    Full text link
    The Dirac electrons occupying the surface states (SSs) of topological insulators (TIs) have been predicted to exhibit many exciting magneto-transport phenomena. Here we report on the first experimental observation of an unconventional planar Hall effect (PHE) and an electrically gate-tunable hysteretic planar magnetoresistance (PMR) in EuS/TI heterostructures, in which EuS is a ferromagnetic insulator (FMI) with an in-plane magnetization. In such exchange-coupled FMI/TI heterostructures, we find a significant (suppressed) PHE when the in-plane magnetic field is parallel (perpendicular) to the electric current. This behavior differs from previous observations of the PHE in ferromagnets and semiconductors. Furthermore, as the thickness of the 3D TI films is reduced into the 2D limit, in which the Dirac SSs develop a hybridization gap, we find a suppression of the PHE around the charge neutral point indicating the vital role of Dirac SSs in this phenomenon. To explain our findings, we outline a symmetry argument that excludes linear-Hall mechanisms and suggest two possible non-linear Hall mechanisms that can account for all the essential qualitative features in our observations.Comment: 17 pages, 4 figures, accepted by Phys. Rev.

    Software engineering sub-ontology for specific software development

    Get PDF
    In this paper we propose software engineering sub ontology. We called it application-specific ontology, for specific software development. It enables remote team members browsing, searching, sharing, and authoring ontological data under the distributed software engineering projects environment. We transform explicit meaningful human knowledge into application-specific ontology, where knowledge structures and semantics are linked, and we go through a formal hand-shaking agreement establishing process before the semantic contents are updated in ontology repositories. The application-specific ontology is used for communication over project agreement to facilitate better, highly consistent communications and formalized domain knowledge sharing. We assume that object-oriented development is deployed in the distributed projects. The knowledge of object-oriented development formed in the application-specific ontology clarifies the object-oriented development concepts in a machine understandable form. Software agent, for example, can be utilised to extract information

    Prediction of Short-term Traffic Variables using Intelligent Swarm-based Neural Networks

    Get PDF
    This paper presents an innovative algorithm integrated with particle swarm optimization and artificial neural networks to develop short-term traffic flow predictors, which are intended to provide traffic flow forecasting information for traffic management in order to reduce traffic congestion and improve mobility of transportation. The proposed algorithm aims to address the issues of development of short-term traffic flow predictors which have not been addressed fully in the current literature namely that: a) strongly non-linear characteristics are unavoidable in traffic flow data; b) memory space for implementation of short-term traffic flow predictors is limited; c) specification of model structures for short-term traffic flow predictors which do not involve trial and error methods based on human expertise; d) adaptation to newly-captured, traffic flow data is required. The proposed algorithm was applied to forecast traffic flow conditions on a section of freeway in Western Australia, whose traffic flow information is newly-captured. These results clearly demonstrate the effectiveness of using the proposed algorithm for real-time traffic flow forecasting

    A Note on Warped String Compactification

    Full text link
    We give a short review of a large class of warped string geometries, obtained via F-theory compactified on Calabi-Yau fourfolds, that upon reduction to 5 dimensions give consistent supersymmetric realizations of the RS compactification scenario.Comment: 11 pages, 3 figures; v3 corrected spelling of Calab

    Zero-field dissipationless chiral edge transport and the nature of dissipation in the quantum anomalous Hall state

    Get PDF
    The quantum anomalous Hall (QAH) effect is predicted to possess, at zero magnetic field, chiral edge channels that conduct spin polarized current without dissipation. While edge channels have been observed in previous experimental studies of the QAH effect, their dissipationless nature at a zero magnetic field has not been convincingly demonstrated. By a comprehensive experimental study of the gate and temperature dependences of local and nonlocal magnetoresistance, we unambiguously establish the dissipationless edge transport. By studying the onset of dissipation, we also identify the origin of dissipative channels and clarify the surprising observation that the critical temperature of the QAH effect is two orders of magnitude smaller than the Curie temperature of ferromagnetism.Comment: main text+supporting materials. This is the accepted version for PRL. Comments are welcom
    corecore