
©2005 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195657447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Software Engineering Sub-Ontology for Specific Software Development

Wongthongtham, P., Chang, E. & Cheah, C.

School of Information Systems, Curtin University of Technology, Australia
{pornpit.wongthongtham, elizabeth.chang}@cbs.curtin.edu.au, chancheah@optusnet.com.au

Dillon, T.S.

Faculty of Information Technology, University of Technology Sydney, Australia
tharam@it.uts.edu.au

Abstract

In this paper we propose software engineering sub-
ontology. We called it application-specific ontology, for
specific software development. It enables remote team
members browsing, searching, sharing, and authoring
ontological data under the distributed software
engineering projects environment. We transform explicit
meaningful human knowledge into application-specific
ontology, where knowledge structures and semantics are
linked, and we go through a formal hand-shaking
agreement establishing process before the semantic
contents are updated in ontology repositories. The
application-specific ontology is used for communication
over project agreement to facilitate better, highly
consistent communications and formalized domain
knowledge sharing. We assume that object-oriented
development is deployed in the distributed projects. The
knowledge of object-oriented development formed in the
application-specific ontology clarifies the object-
oriented development concepts in a machine
understandable form. Software agent, for example, can
be utilised to extract information.

1. Introduction

As project teams engage more in projects that are
geographically dispersed, inter-site communications
become a key issue that often leads to
miscommunications and misunderstandings. Carmel [1]
and Van Fenema [2] suggest that traditional mechanisms,
such as coordination and control frameworks, combined
with appropriate integrated voice, data and video
communication technology could be effective methods
and tools for sharing and exchanging knowledge in
projects. However, little is known of the success of using
such communications technologies and methodologies in

globally distributed software engineering projects [3].
Furthermore, it is already common knowledge that
current development methodologies do not facilitate
seamless and effective distribution of development tasks
across multiple sites [4]. Therefore, this paper is to
explore an application-specific ontology to help in
communication in a globally distributed setting. We
assume that object-oriented development is used in the
projects.

This paper is a response to the challenge problems in
the Multi-site Distributed Software Development
(MDSD), which were highlighted in [4, 5]. Inter-site
communication issues are especially key concerns in
large-scale systems development, where the development
teams reside in different locations [4-7]. In earlier work
we proposed some solutions [4-8], and this paper
examines one of these solutions, i.e. application-specific
ontology, in detail. In the next section we briefly define
ontology and in section 3 we briefly discuss ontology
development. Our approach, application-specific
ontology, will be explained in section 4 together with its
staged process flows in section 5. We conclude this
research and identify future work in section 6.

2. Software Engineering Ontology

In recent years, the notion of the ‘Ontology’ has been
gaining prominence, in which Ontology provides the
explicit formalization and conceptual specification of a
domain or a general knowledge representation. The
knowledge conceptualization is modelled in terms of
notional entities and their inter-relationships. An
ontology, or simply a conceptual knowledge map is only
meaningful when it is associated with semantic data
instances. From a machine perspective, these instances
contain the actual data that are being queried. Therefore
one of the main purposes of ontology is to enable
communication between computer systems.

Proceedings of the 2005 29th Annual IEEE/NASA Software Engineering Workshop (SEW’05)
0-7695-2306-4/05 $20.00 © 2005 IEEE
Proceedings of the 2005 29th Annual IEEE/NASA Software Engineering Workshop (SEW’05)
0-7695-2306-4/05 $20.00 © 2005 IEEE

We have proposed in [5-8] the software engineering
ontology, which divided into two sub-ontologies:
Generic ontology and Application-specific ontology.
Generic ontology is a set of software engineering terms
including the vocabulary, the semantic interconnections,
and some simple rules of inference and logic for the
software development. It provides the vocabulary for the
terms in software engineering. Application-specific
ontology is different in that it is an explicit specification
of object-oriented development in software engineering
for a particular software development project. Set in a
dedicated software development project environment,
this domain ontology can be used for sharing intra-
project communications of project knowledge that have
been established by consensus agreement by different
project members in dispersed locations. Both generic
and application-specific ontologies establish intra and
inter project knowledge agreements for enabling
knowledge sharing. Application-specific ontologies
foster a seamless and virtual: intra project environment
for internal browsing, searching, sharing and authoring
ontological project data across sites.

3. Software Engineering Ontology
Development

A number of ontology representation languages
currently exist; notable among these are Knowledge
Interchange Format (KIF)[9], Simple HTML Ontology
Extension (SHOE)[10], ISO standard for describing
knowledge structures (Topic Maps)[11], Ontology
Exchange Language (XOL)[12], Ontology Markup
Language (OML)[13], Ontology Inference Layer
(OIL[14], DAML+OIL[15]) and Web Ontology
Language (OWL)[16]. We have chosen OWL because
as it has now become the official W3C standard since the
World Wide Web consortium released it in February
2004. There are many ontology development tools for
creating ontology including Protégé[17], Oiled[18],
OntoEdit[19], OntoLingua[20], and WebODE[21].
Protégé is the most widely known and used tool for
creating ontologies and knowledge bases. Protégé is an
open-source ontology-development tool developed at
Stanford Medical Informatics. This provides an
integrated environment to build and edit ontologies and
check errors and inconsistencies (using a reasoner).
Protégé has a number of different plug-ins including
OWL Plug-in. The OWL Plug-in is a complex Protégé

extension that can be used to edit and create OWL files
and databases. To do querying, we are using RDQL - a
query language for Resource Description Framework
(RDF) in Jena model [22]. Jena 2 is a Java framework
for writing Semantic Web applications and supporting a
programmatic environment for OWL [23]. Data held
imported ontology can be accessed, retrieved and
modified using RDQL query language. We use UML to
model ontology because there is a lack of graphical
notation of modelling ontology. There are benefits for
using the same paradigm for modelling ontologies and
knowledge. Even standard UML cannot express
advanced ontology features such as restrictions, cannot
easily conclude whether the same property was attached
to more than one class and cannot create a hierarchy of
properties. However, it is a kind of agile modelling
method for ontology design.

4. Software Engineering Sub-Ontology

A schematic overview of our approach is shown in
Figure 1 illustrating a transformation of concepts to the
ontology and its instances. The software engineering
concepts are transformed to the ontology as domain
knowledge in the form of man-machine-interoperable.
Team members model their project system, i.e. project
specific knowledge which is obviously based on domain
knowledge or software engineering concepts. The project
specific knowledge specially meets a particular project
need and will be put into application-specific ontology as
instance knowledge in form of machine-readable.
Therefore, instance knowledge varies based on its use for
a particular project. Once created, it is available to be
shared among the teams through the Internet. All team
members, regardless where they are, can query the
semantic linked data instances and use them as the
common communication and knowledge basis of raising
discussion matters, questions, analyzing problems,
proposing revisions or designing solutions, whatever.

Domain knowledge of ‘object class’ diagram concept
in object-oriented development is presented in Figure 2
and ‘use case’ diagram concept is shown in Figure 3.
Class diagram for some project design shown in Figure 4
can be transformed into application-specific ontology as
instance knowledge.

Proceedings of the 2005 29th Annual IEEE/NASA Software Engineering Workshop (SEW’05)
0-7695-2306-4/05 $20.00 © 2005 IEEE
Proceedings of the 2005 29th Annual IEEE/NASA Software Engineering Workshop (SEW’05)
0-7695-2306-4/05 $20.00 © 2005 IEEE

Figure 1: An overview of our approach

Figure 2: Meta-model of domain knowledge of ‘object class’ concept in object-oriented development

Domain

Knowledge

Instance

Knowledge
Concepts Project

Specific

InternetSerialised

knowledge

Application-specific Ontology

Proceedings of the 2005 29th Annual IEEE/NASA Software Engineering Workshop (SEW’05)
0-7695-2306-4/05 $20.00 © 2005 IEEE
Proceedings of the 2005 29th Annual IEEE/NASA Software Engineering Workshop (SEW’05)
0-7695-2306-4/05 $20.00 © 2005 IEEE

Figure 3: Meta-model of domain knowledge of ‘use case’ concept in object-oriented development

Ontology class is one of the most essential concepts in
ontology modelling. Note that ontology class as it is
defined in OWL (owl:class) is different from traditional
UML class or object-oriented programming language
class concept. In this paper, ontology class represents a
concept for grouping resources with similar
characteristics. For example in Figure 2 object class in
UML is an ontology class (more precise – a class) that
classifies many instances e.g. (in Figure 4) Customer,
RentalCustomer, InsuranceRegisteredDriver,
RentalRegisteredDriver. All object classes have some

characteristics i.e. name, attribute, operation, and
relationship which are represented by properties i.e.
ObjectClassName (Datatype Property), hasAttribute
(Object Property), hasOperation (Object Property), and
hasRelationship (Object Property) respectively. These
properties can have values that are of certain type;
ObjectClassName can be a string, hasAttribute can be
Attribute (another ontology class). Attribute then
classifies concrete attributes (its instances): CustomerID,
FirstName, LastName, etc. (see Figure 4).

Figure 4: An example of class diagram put into the ontology as instance knowledge

Ontology class attributes are represented through
properties. A property is a relation between a subject
resource and an object resource. It might look similar to
a concept of attribute in traditional in object-oriented
sense. Nevertheless, they are different; ontology class
property is stand-alone. It does not depend on any class
like attributes in UML. In OWL, an ontology class
property can be defined even if no classes are associated

with it. OWL classifies two types of properties i.e.
owl:ObjectProperty whose range can be only an
instances and owl:DatatypeProperty whose range can be
only a datatype value. OWL also defines additional
characteristic on properties i.e functional, inverse
functional, transitive, and symmetric property. These
can further refine the property. Both ontology classes
and ontology class attributes may be constructed in a

Proceedings of the 2005 29th Annual IEEE/NASA Software Engineering Workshop (SEW’05)
0-7695-2306-4/05 $20.00 © 2005 IEEE
Proceedings of the 2005 29th Annual IEEE/NASA Software Engineering Workshop (SEW’05)
0-7695-2306-4/05 $20.00 © 2005 IEEE

superclass-subclass hierarchy. Subclasses are subsumed
by their superclasses and can encapsulate its
superclasses.

 An instance of an ontology class is also known as an
individual. Class diagram for example shown in Figure 4
can be transformed into application-specific ontology as
instance knowledge in the following way:

• ObjectClassName in ontology class of ObjectClass
is ‘Customer’.

• ObjectClass ontology class has relation named
hasAttribute with Attribute ontology class. Attribute
ontology class contains properties e.g. AttName is
‘CustomerID’, AttType is ‘int’, and AttVisibility is
‘public’ etc.

• ObjectClass ontology class has relation named
hasOperation with Operation ontology class.
Operation ontology class contains properties e.g.
OperationName is ‘NewCustomer’, SetParameter
and GetParameter is none and OperationVisibility is
‘public’ etc.

• ObjectClass ontology class e.g. ‘Customer’ has
relation named hasRelationship with another
ObjectClass ontology class. The hasRelationship is
Generalisation ontology class which
ParticipatingCls is ‘RentalCustomer’ (an
ObjectClass ontology class).

 Likewise ‘use case’ diagram in some project design
can in the same way convert into application-specific
ontology as instance knowledge using the ontology
modelling of domain knowledge of ‘use case’ shown in
Figure 3. The domain knowledge and instance
knowledge will then be shared as serialised knowledge
through the Internet. Project team members can then use
it to create consistent understanding within.

5. Software Engineering Sub-Ontology
Platforms

If we are to model the said ontology development
approach as a system, this is how the man-machine
system interfaces work. A user at any one site logs a
project matter in the system. Figure 5 shows such an
example of the text transcription which under
circumstance of development teams are geographically
distributed and team members are involved in many
projects simultaneously made thing difficult.

 The Question Platform stage is shown in Figure 6.
During this interacting session, users need to specify
what they mean of object class or attribute or operation
or relationship. For example ‘InsuranceRegisterdDriver’
is object class so users choose it by highlighting the text
of ‘InsuranceRegisterdDriver’ and then select type as a
class to indicate that it is an object class. Also users can
select other types i.e. relationship, attribute, operation to
be shown. The result of its UML-like diagram is like
shown in Figure 4.
 The Suggestion platform and Solution platform
interactions are similar, as both platforms will involve
modifying instance knowledge. A user interacts with the
Suggestion platform to propose instance chances, and
pending on authorized approval made through the
Solution platform, the proposed changes become
solution changes. Until such status change, the instance
changes get updated in the ontology repository. Figure 7
is a screenshot of a Suggestion/Solution platform
interaction, when one can add, delete and modify
instance knowledge. After the user has progressed the
changes through both the platforms, its UML-like
diagram will be shown as well. Those UML-like
diagrams will help them to have a clear understanding as
well as help them recognize the instance knowledge
when they work in other and many more all at the same
time.

I am struggling to understand why we need it. I think the system will be simpler for people to understand if we deleted the insurance registered driver.

My reasons for this are that the insurance registered driver is a sub type of the customer. This means that for every insurance registered driver object
there must be a corresponding customer object. However, in the customer object we store values like customer type, insurance history value and rental
history value. It does not make sense to have these values for the insurance registered driver. I also think people will be confused because we have the
rental registered driver as an association with the rental customer (which is a sub type of the customer) but the insurance registered driver is a sub type of
the customer.

Figure5: An example of plain text communication

Proceedings of the 2005 29th Annual IEEE/NASA Software Engineering Workshop (SEW’05)
0-7695-2306-4/05 $20.00 © 2005 IEEE
Proceedings of the 2005 29th Annual IEEE/NASA Software Engineering Workshop (SEW’05)
0-7695-2306-4/05 $20.00 © 2005 IEEE

Figure6: Question platform

Figure7: Suggestion/Solution platform

6. Conclusions and Future Work

We have described how an application-specific
ontology models an approach to transform explicit
semantic knowledge (ie data instances in computers) to
conceptual knowledge representations (by using UML
notations) and formalise consensus agreement between
project team players to approve instance knowledge as
the common communication language and project
knowledge across all sites. Our future work aims at
implementing multiple software agents to access data
from a project-ontology repository and performing
reasoning etc. The research would also examine ways of
how these agents mine and aggregate knowledge from
other project-ontology repositories in networked systems
to reconfigure a generic MDSD ontology, which can
automatically grow and establish a larger scale of
common communications and MDSD/domain
knowledge without human being intervention. This
concept can also extend to self a universally generic

ontology that can self generate and maintain all the
universal knowledge of the world and across different
domain disciplines!

7. References

[1] Carmel, E. and R. Agarwal, Tactical Approaches for
Alleviating Distance in Global Software
Development. IEEE Software, 2001. 18(2): p. 22-29.

[2] Van Fenema, P.C., Coordination and Control of
Polycontextual, Geographically Dispersed
Temporary Systems: The Case of Global Software
Projects, in Department of Decision and Information
Sciences, School of Management: Rotterdam. 2002,
Erasmus University: The Netherlands.

[3] Kotlarsky, J.M., K. Kumar, and J.v. Hillegersberg.
Coordination and collaboration for globally
distributed teams: the case of component-
based/object-oriented software development. in
Proceedings of International Workshop on Global

Proceedings of the 2005 29th Annual IEEE/NASA Software Engineering Workshop (SEW’05)
0-7695-2306-4/05 $20.00 © 2005 IEEE
Proceedings of the 2005 29th Annual IEEE/NASA Software Engineering Workshop (SEW’05)
0-7695-2306-4/05 $20.00 © 2005 IEEE

Software Development (ICSE 2002). 2002. Orlando,
Florida, USA.

[4] Wongthongtham, P., et al. Ontology based solution
proposal for multi-site distributed software
development. in Proceedings of the 16th
International Conference on Software and Systems
Engineering and their Applications. 2003. Paris,
France.

[5] Wongthongtham, P., E. Chang, and T.S. Dillon.
Methodology for multi-site software engineering
using ontology. in Proceedings of the International
Conference on Software Engineering Research and
Practice. 2004. Las Vegas, USA.

[6] Wongthongtham, P., E. Chang, and T.S. Dillon.
Intelligent communication through software agent
and ontology for multi-site software engineering. in
Proceedings of the 3rd International Workshop on
Software Engineering for Large-Scale Multi-Agent
Systems. 2004. Edinburgh, UK.

[7] Wongthongtham, P., E. Chang, and N. Jayaratna.
Ontology-based Software Engineering to Multi-site
Software Development. in (accepted for presentation)
We-b Doctoral Consortium November 25. 2004.
Fremantle, Australia.

[8] Wongthongtham, P., et al. Software Engineering
Ontologies and their Implementation. in (accepted
for presentation) The IASTED International
Conference on SOFTWARE ENGINEERING,
February 15-17. 2005. Innsbruck, Austria.

[9] Genesereth, M.R. and R.E. Fikes, Knowledge
Interchange Format Version 3 Reference Manual,
Logic-92-1. 1992, Stanford University Logic Group.

[10] Luke, S. and J. Heflin, SHOE 1.01 Proposed
specification. 2000, SHOE Project.

[11] Librelotto, G., J.C. Ramalho, and P.R. Henriques,
XML Topic Map Builder: Specification and
Generation. In: XATA: XML. 2003, Aplicaes e
Tecnologias Associadas.

[12] Karp, R., V. Chaudhri, and J. Thomere, XOL:An
XML-Based Ontology Exchange Language. 1999.

[13] Kent, R., Conceptual Knowledge Markup Language.
1998.

[14] Horrocks, I., et al. OIL in a Nutshell. in Proceeding
of ECAI '00 Workshop on Application of Ontologies
and PSMs. 2000. Berlin, Germany.

[15] Horrocks, I. and F.v. Harmelen, Reference
Description of the DAML+OIL Ontology Markup
Language. 2001.

[16] McGuinness, D.L. and F.V. Harmelen, OWL Web
Ontology Language Overview. 2004.

[17] Gennari, J., et al., The Evolution of Protege: An
Environment for Knowledge-Based Systems
Development. 2002, Stanford University,
http://protege.stanford.edu.

[18] Bechhofer, S., et al. OilEd: a Reason-able Ontology
Editor for the Semantic Web. in Proceeding of
KI2001, Joint German/Austrian conference on
Artificial Intelligence. 2001. Vienna: Springer-Verlag
LNAI.

[19] Sure, Y., et al. OntoEdit: Collaborative Ontology
Development for the Semantic Web. in International
Semantic Web Conference (ISWC02). 2002. Sardinia,
Italy: LNCS 2343.

[20] Farquhar, A., R. Fikes, and J. Rice. The Ontolingua
Server: A Tool for Collaborative Ontology
Construction. in 10th Knowledge Acquisition for
Knowledge-Based Systems Workshop. 1996. Banff,
Canada.

[21] Arpirez, J.C., et al. WebODE: a scalable ontological
engineering workbench. in First International
Conference on Knowledge Capture (K-CAP 2001).
2001. Victoria, Canada.

[22] Seaborne, A., Jena Tutorial: A Programmer's
Introduction to RDQL. Updated February 2004,
http://jena.sourceforge.net/tutorial/RDQL/index.html.

[23] Carroll, J.J., et al., Jena: Implementing the Semantic
Web Recommendations. 2004, Digital Media Systems
Laboratory, HP Laboratories Bristol.

Proceedings of the 2005 29th Annual IEEE/NASA Software Engineering Workshop (SEW’05)
0-7695-2306-4/05 $20.00 © 2005 IEEE
Proceedings of the 2005 29th Annual IEEE/NASA Software Engineering Workshop (SEW’05)
0-7695-2306-4/05 $20.00 © 2005 IEEE

