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Abstract: This paper presents an innovative algorithm integrated with particle swarm optimization and artificial neural networks to develop 

short-term traffic flow predictors, which are intended to provide traffic flow forecasting information for traffic management in order to 

reduce traffic congestion and improve mobility of transportation. The proposed algorithm aims to address the issues of development of short-

term traffic flow predictors which have not been addressed fully in the current literature namely that: a) strongly non-linear characteristics are 

unavoidable in traffic flow data; b) memory space for implementation of short-term traffic flow predictors is limited; c) specification of 

model structures for short-term traffic flow predictors which do not involve trial and error methods based on human expertise; d) adaptation 

to newly-captured, traffic flow data is required. The proposed algorithm was applied to forecast traffic flow conditions on a section of 

freeway in Western Australia, whose traffic flow information is newly-captured. These results clearly demonstrate the effectiveness of using 

the proposed algorithm for real-time traffic flow forecasting. 
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1. Introduction  

Forecasting accurate traffic flow conditions has long been identified as a proactive approach to regional traffic control [27], which can be 

broadly classified as short-term or long-term traffic flow forecasting [1]. Long-term forecasting provides monthly or yearly traffic flow 

conditions forecasting and is commonly used for long-term planning of transportation. Short-term forecasting, on the other hand, focuses on 

making predictions based on roadway sensor data, about the likely traffic flow changes in the short-term (typically within minutes), and 

provides the predictive functionality required for a proactive approach to traffic operations and control [33]. This paper focuses on short-term 

forecasting, where the interest is on producing forecasts after the system receives current traffic flow data from an on-road traffic facility. 

Exponential filtering [25] and Kalman filtering [21] approaches have been applied for forecasting short-term traffic flow based on past data. 

However, these filtering techniques can achieve only reasonable accuracies in short-time ahead traffic flow forecasting, when the traffic 

flows are relatively constant. More recently, linear statistical time series models, such as the autoregressive integrated moving average [28] 

and the seasonal one [16] have been used to improve the accuracies. However, their ability to capture the dynamics and nonlinearities that 

exist in the traffic flow is questionable, where unavoidable nonlinear characteristics of traffic flow are caused by the drivers’ behaviors or 

reaction time regarding current traffic flow [3]. For example, different drivers have different reaction times when having to apply their brakes 

to stop the vehicle, when an obstacle is in front.  Also, they have different behaviors when using their accelerators to control their car speeds, 

in order to match the current traffic flow conditions. Even though Alessandri et al. [2] proposed a macrosopoic approach to model nonlinear 

freeway traffic flow, uncertainties and measurement noise in terms of traffic flow have to be assumed to be small, which cannot be 

guaranteed in the real world. 
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Another commonly used forecasting approach, neural networks (NNs), has been used to model highly non-linear traffic flow [5, 8, 9, 15] 

with more accurate forecasting results than those obtained by the classical forecasting approaches, where prior knowledge of the functional 

forms of traffic flow is not required by NNs. Also, NNs can learn from collected traffic flow data in the presence of uncertainty, which is not 

apparent because of the measurement noise or errors caused by traffic flow sensors. To further enhance the generalization capability of short-

term traffic flow predictors, hybrid neural networks have been studied in recent research. For example, the Takagi-Sugeno fuzzy neural 

networks [12], which combine the mechanisms of fuzzy logic and feed-forward NNs, have been used to develop short-term traffic flow 

predictors [11, 24, 37]. Stathopoulos et al. [30] proposed to forecast short-term traffic flow by combining the forecasting outputs from neural 

networks and Kalman filters. Srinivasan et al. [29] developed a short-term traffic flow predictor which consists of two components: a fuzzy 

filter and a feed-forward neural network. Tan et al. [32] have developed a short-term traffic flow predictor, which combines the mechanisms 

of neural networks and the classical forecasting methods including moving average and autoregressive moving averages. Even if more 

accurate results can be obtained by these methods than by solely using NNs, their common limitations have been recognized: i) they were 

developed based on historical collected traffic flow data. Therefore, they are likely to produce misleading traffic flow forecasting on current 

road conditions, if the characteristics of the historical traffic flow data are very different from those of the newly acquired traffic flow data; ii) 

the number of parameters used by the hybrid neural networks is great, and their memory footprints are larger than those required by the NNs 

with simpler configurations.  More memory space and greater computational powers are therefore required to implement these hybrid NNs 

for adaption to newly-captured traffic flow data; iii) specification of NN structures such as NN configuration and number of hidden nodes is 

required to be pre-defined by a trial and error method which cannot guarantee that optimal ones will be obtained. Also, the pre-defined NN 

structures are fixed and cannot be adapted to newly-captured traffic flow data. 

In this paper, an effective framework, namely adaptive particle swarm optimization, APSO, is proposed based on simple multi-layer 

neural networks, in order to address the issues related to the development of short-term traffic flow predictors namely: a) strongly non-linear 

characteristics which are unavoidable in traffic flow data; b) limited memory space for implementing short-term traffic flow predictors; c) 

specification of model structures for short-term traffic flow predictors which is required without involving trial and error method based on 

human expertise; d) short-term traffic flow predictors need to adapt to newly captured traffic flow data. To address issues (a) to (d), the 

APSO is proposed with the following features:  

Simple multi-layer neural networks: The APSO is configured with the simple multi-layer neural networks, which demonstrably are able to 

forecast nonlinear traffic flow [2, 5, 8, 9, 15]. It tackles issue (a), that nonlinear characteristics exist in traffic flow data. Also, the number of 

parameters required by simple multi-layer neural networks is smaller than those required by the hybrid neural networks. Therefore, they are 

more suitable for adaptation to newly-captured traffic flow data, as less memory space and computational power is required that those 

required by hybrid neural networks for implementation, which tackles issue (b), that memory space for implementing short-term traffic flow 

predictors is limited. 

Particle representation: In the APSO, each particle consists of two types of elements [31], control elements and parameter elements, in 

order to represent the NNs. Control elements represent the NN structures including the NN configurations and the number of hidden nodes. 

Parameter elements represent the NN parameters. Optimal structures and parameters can be adapted with newly-captured traffic flow data, 



and also determination of optimal structures of NNs can be handled automatically by the APSO without involving trial and error methods. It 

addresses issue (b) that overcomes the limitations of the existing NN approaches [2, 5, 8, 9, 15] for traffic flow forecasting which is that the 

structure of the NN, such as the number of hidden nodes, is required to be pre-defined and cannot be adapted with respect to time. 

Movement of particle swarm and multi-swarm: In APSO, the mechanism of particle swarm optimization, which is inspired by the social 

behaviours of animals like fish schooling and bird flocking [13], is employed to optimize short-term traffic flow predictors, as it can 

effectively solve the many difficulty optimization problems such as developing NNs [34, 35]. Also, Chan et al. [6] show that it can 

effectively adapt optimal structures and parameters of time-varying systems, where data is newly captured. Further to enhance the adaptive 

capability, the mechanism of sub-swarms [36] is employed. It groups particles with similar characteristics into a sub-swarm, which 

effectively create spatially organised internal representations of the features and abstractions detected in the particles. It is intended to locate 

the global optimum of the traffic flow forecasting predictor more effectively. Both these mechanisms are designed to address issue (d), that 

short-term traffic flow predictors need to adapt to newly-captured traffic flow data. 

To evaluate the performance of the APSO, it is applied to develop short-term traffic flow predictors to forecast traffic flow conditions on 

a section of the freeway in Western Australia. Results show that the short-term traffic flow predictor developed by APSO is more accurate 

than those developed by the other tested algorithms including the Kalman filter [21], genetic algorithm [17] and particle swarm optimization 

approaches [4, 10, 18, 22]. The rest of the paper is organized as follows. Section 2 describes the mechanism of the short-term traffic flow 

predictor. Section 3 discusses the architecture of the APSO which is designed to improve the accuracy of the short-term traffic flow predictor. 

Section 4 reports the results obtained in a simulation case study. Finally, the conclusion is given in Section 5. 

2. Short-term traffic flow predictor 

Figure 1 shows the common configuration of a section of a freeway, consisting of an on-ramp and an off-ramp at both starting point A and 

end point B. While drivers at location A intend to go to destination C, forecasting information of future traffic flow condition at B is essential 

in order for the traffic control center to determine the best route for them. If the traffic flow conditions are forecast to be smooth at B, the 

traffic control center will allow them to go directly via the freeway to B, leave the freeway by the off-ramp at B, and then reach C.  

Alternatively, if the traffic flow conditions are forecast to be congested at B, the traffic control center will allow them to leave the freeway by 

the off-ramp in A, and then use the minor road to reach C.  

To forecast future traffic flow conditions at B, a short-term traffic flow predictor was developed based on traffic flow data collected by 

five detector stations as illustrated in Figure 1, where 
A

off
D  and 

A

on
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y t , at time t are captured by the five detection stations 
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on
D  and 

B

thro
D  respectively with a 

sampling period 
s

T . Figure 1 shows only the short-term traffic flow predictor which aims to forecast traffic flow conditions at location B. In 

fact, this location can be set at any segment of the freeway, which is important for forecasting the short-term traffic flow conditions. For 

different segments of the freeway which are important, different short-term traffic flow predictors can be developed. Then, based on the 



traffic flow conditions forecasts for different segments of the freeway, drivers are more likely to make the correct decision. For example, if 

two short-term traffic flow predictors are developed to forecast future traffic flow conditions at both locations A and B, then the future traffic 

flow conditions at both locations A and B are available. Drivers finding themselves before location A can determine more correctly whether 

they should use the freeway or use the minor road to reach location C. 

Figure 1 Schematic of short-term traffic flow predictor of a section of the freeway 

The traffic flow conditions can be reflected by average speed of vehicles, flow of vehicles and density of vehicles. In this research, the 

average speed and density of vehicles are used as indicators of the traffic flow conditions. In general, the traffic flow on the freeway is 

smooth if the average speed of the vehicles approximates the speed limit of the freeway and the density of vehicles is low. These two 

measures are captured by the detector station, which consists of two inductive loop sensors separated with a small distance. To measure 

speeds of vehicles, the time difference of the vehicle passing between the two sensors is first captured. Then, the speed of the vehicle is 

calculated based on the time difference between the two captions and the distance between the two sensors. To measure density of vehicles, 

the detector station first captures the time taken between two consecutive vehicles passing through it. Then, the distance between two 

vehicles is calculated, based on the speed of the first vehicle passing through the detector station and the time difference between the two 

vehicles passing through the detector station. After the average distance between vehicles is calculated, the density of vehicles can be 

estimated by inversing the average distance between vehicles. 

In this paper, the short-term traffic flow predictor is developed based on a time-varying neural network model namely TVNN, which is 

configured as a three-layer neural network consisting of only three layers: input layer, hidden layer and output layer. A three-layer neural 

network is used because it is able to forecast nonlinear traffic flow [2, 5, 8, 9, 15]. Also, it requires fewer parameters than those of hybrid 

neural networks, which incorporate neural networks approaches with other computational methods [11, 24, 29, 30, 32, 37]. Hence, it is more 

suitable for adapting to newly-captured traffic flow data.  TVNN forecasts future traffic flow conditions at location B, ( )ˆ B

thro s
y t mT+ , with 

m sampling time ahead. The inputs of TVNN are the current traffic flow conditions, ( )A
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y t i T y t i T y t i T i p− ⋅ − ⋅ − ⋅ = …  ; ( )0 tα  denotes the weight of the bias of the output node at time t; ( )j
tβ  denotes 

the weight on the link from the j-th hidden node to the output node at time t;  ( ),0j tγ  denotes the weight of the bias of the j-th hidden node at 

time t;  ( ), ,j i k
tγ  denotes the weight on the links from the input node to the j-th hidden node; ( ).Ψ  is the transfer function of the hidden node. 

Here, the sigmoid function is used, as it can achieve satisfactory results for traffic flow forecasting [2]; ( )j
tδ is the activator with respect to 

the j-th hidden node, with  ( ) 0j tδ = or ( ) 1j tδ = . If ( ) 1j tδ = , the j-th hidden node is activated. Then, the corresponding links between the 

input nodes to the j-th hidden node, as well as the corresponding links between the j-th hidden node to the output node are also activated. 

Otherwise, the j-th hidden node is inactivated, if ( ) 0
j

tδ = . Then, the corresponding links connected with the j-th hidden node are also 

inactivated. This overcomes the limitations of the commonly used fixed-connected neural networks, where all the input nodes, hidden nodes 

and output nodes are restricted by a fixed configuration. Hence, the structures of the fixed-connected neural networks are fixed and cannot be 

adapted with respect to time. Also, some links between nodes are useless. If the fixed connected network is used, then some extra but 

unnecessary time is required to tune or optimize the weights between these useless links. It increases the time needed to adapt to the newly-

captured traffic flow data. By introducing ( )j
tδ , the TVNN can adapt to newly-captured traffic flow data, by varying both the weights on the 

connections and the neural network structure. In equation (2), ( )W t  is denoted as the TVNN parameters, which are written as: 
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( )W t  is determined by two stages, off-line stage and on-line stage, as shown in Figure 2. In the off-line stage, ( )W t  is initialized based 

on a set of Nhist pieces of historical traffic flow data, off line−Π , which were collected before the on-line time Ton-line at time ( )t i  with 
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where ( )( )B

thro
y t i  is the traffic flow condition collected by the detector station 

B

thro
D  at the past time ( )it , and 

( )( ) ( )( ) ( )( )ˆ ,
B

thro s on liney t i TVNN Y t i mT W T −= − . RMS

hist
J in equation (3) and MAE

hist
J  in equation (4) represent the root mean square error and the 

mean absolute error in terms of the differences between actual conditions and forecasts respectively. MAE

hist
J  is an average of the absolute 

errors, where both small and large errors have the same weights. RMS

hist
J  tends to exaggerate significant errors by weighting the large errors 

more heavily than smaller errors by squaring them. 

In the on-line stage, ( )W t  is fine-tuned by adapting a set of m pieces of new traffic flow data, ( )on line t−Π , which are captured after the on-
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the following cost functions (5) and (6) in terms of mean absolute error and root mean square error respectively: 
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Figure 2 Collection of historical traffic flow data and adaption to newly captured traffic flow data 

To solve the optimization problems (3) to (6), classical tools for nonlinear programming such as nonlinear branch-and-bound, sequential 

linearization, and Lagrangian relaxation methods can be used. However, their shortcoming is that they cannot cope with significantly non-

smooth functions and multiple local minima of which the optimization problems (3) to (6) may involve. Therefore, we propose to use particle 

swarm optimization, to solve these optimization problems, as this method can obtain satisfactory solutions to optimization problems that are 

discontinuous, vastly multimodal, or involve noisy search spaces [23]. An algorithm based on particle swarm optimization, namely adaptive 

particle swarm optimization APSO, is developed in the following section to determine TVNN parameters, ( )W t . 

3. Adaptive Particle Swarm Optimization 

The operations of APSO can be divided into two stages. In the first stage, APSO determines the initial TVNN parameters, ( )
on line

W T − , based 

on the historical traffic data, off line−Π , collected before time 
on line

T − . In the second stage, APSO updates the TVNN parameters, ( )W t , based on 
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the new traffic data, ( )on line t−Π , captured after time 
on line

T − . By doing this, the TVNN can adapt to newly-captured traffic flow data by 

updating ( )W t , in order to obtain better traffic flow accuracy. It overcomes the neural network approaches in the literature which have been 

developed based only on the historical traffic flow data [2, 5, 8, 9, 15], but are not capable of adapting to newly-captured traffic flow data. 

The operations of APSO are shown in Algorithm 1.  

In the first stage, APSO starts by generating an initial swam based on the particle representation described in Section 3.1. Then, a set of 

sub-swarms is created by Algorithm 2, namely the Sub-swarm Creation Algorithm described in Section 3.2. After the sub-swarms have been 

created, Algorithm 3, namely the Particle Updating Algorithm described in Section 3.3, is used to update each particle in the sub-swarms, in 

order to locate the optima of the cost function. In Algorithm 3, either MAE

hist
e in equation (3), or MAE

histe  in equation (4) can be used as the cost 

function, which aims to fit the historical traffic flow data, off line−Π , collected before the on-line time 
on line

T − . When the termination condition 

is reached, the best of the best of all particles of all sub-swarms is returned as the initial TVNN parameter, ( )
on line

W T − .  

Algorithm 1: APSO 

Begin 

if 
on line

t T −< */ first stage of APSO 

Step 1: Create an initial swarm, ( )on line
S T −

, with Ns particles which is described in Section 3.1 

Step 2: Divide the initial swarm, ( )on line
S T −

, into sub-swarms, ( )i on line
s T −

, with i=1,2,…, 
( )on lineS T

N
−

 using Algorithm 

2, ( )( )on line
multiswarm S T −

, described in Section 3.2 

Step 3: Update the particles of each sub-swarm based on Algorithm 3, ( )( )i on line
update s T −

, with i=1,2,…, k, described in Section 3.3 

 */ MAE

hist
e  in (3) or MAE

hist
e  in (4) is used as the cost function in Algorithm 3 

Step 4: If the termination condition is reached, goto Step 5. Otherwise, goto Step 2. 

Step 5:  Return ( )
on line

W T −  /* ( )
on line

W T −  is the best TVNN parameters obtained by the best particle 

 Endif */ end of the first stage of APSO 

If 
on linet T −≥  */ second stage of APSO 

Step 6: 
on line s

t T T−= + ;  

Step 7: Update the particles of each sub-swarm by Algorithm 3, ( )( )iupdate s t  

 */ either MAE

adapte  in (5) or RMS

adapte  in (6) is used as the cost function of Algorithm 3 

Step 8:  Return ( )W t  /* ( )W t  is the best TVNN parameters obtained by the best particle 

Step 9: Determine the change of the characteristics of the traffic flow data ( )on line t−Π  captured at time t and those ( )on line

st T
−Π −  captured at 

time ( )st T−  based on Algorithm 4, ( ) ( )( ),on line on line

s
change t t T− −Π Π −  described in Section 3.4. 

If ( ) ( )( )( ),on line on line

s
change t t T True− −Π Π − =  then 

Step 10.1: Re-generate Ns particles randomly to form a new swarm ( )S t  with Ns particles 

Step 10.2: Re-group the new swarm ( )S t  into sub-swarms ( )i
s t   with i=1,2,…, 

( )S t
N  based on Algorithm 2, ( )( )multiswarm S t . 

    Endif  
Step 11: If TVNN is still on-line, goto Step 6. Otherwise Break */ end of the second stage of APSO 

Endif 

Ends 
In the second stage, each particle of each sub-swarm is updated based on Algorithm 3, in order to exploit the time-varying peak covered 

by the sub-swarm, which adapts the new characteristic of the newly-captured traffic flow data, ( )on line
t

−Π . Either MAE

adapte  in equation (5), or 

RMS

adapt
e  in equation (6) can be used as the cost function in Algorithm 3. The best particle among all particles in all sub-swarms is returned as 

the TVNN parameter, ( )W t , at time t. If a significant change is detected by Algorithm 4, namely the Change Detection Algorithm described 

in Section 3.4, the following actions are taken by the APSO to adapt to the newly captured traffic flow data, ( )on line t−Π , whose characteristic 



of ( )on line t−Π  is significantly different from those of the previously captured traffic flow data. First, all particles are regenerated randomly, 

and then a set of sub-swarms is created by Algorithm 2 which will relocate all the TVNNs represented by the particles to adapt significantly 

to the newly-captured data. If no significant change is detected, the TVNNs represented by the particles are slightly fine-tuned to adapt to the 

newly-captured data by Algorithm 3. The process continues until the on-line condition is terminated.  

3.1 Particle Representation 

The swarm with Ns particles in hierarchical form [31] is used in the APSO for representing both the structure and the weights of the TVNN. 

The i1-th particle, ( )
1i

p t , is used to represent the TVNN parameters, ( )W t , defined in equation (2), where ( )
1i

p t  consists of two types of 

elements, the control elements, ( )
1i

tσ , and parameter elements, ( )
1i

tρ . ( )
1i

p t  is denoted by,  

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1,1 ,2 ,, ,..., ,

pi i i i n i i
p t p t p t p t t tσ ρ   = =   

, where ( ) [ ]
1 2, 1..1
i i

p t ∈ −  with i1=1,2,…, Ns, i2=1,2,…, np, and np is the total 

number of elements. After transforming ( )
1i

tσ  to binary bits, ( )
1i

tσ  can be used by the particle swarm optimization for solving optimization 

problems with discrete variables [14]. ( )
1i

tσ  consists of the first M elements of ( )
1i

p t , and each element of ( )
1i

tσ  is used to represent an 

activator with respect to a hidden node in the TVNN, where ( ) ( ) ( ) ( )
1 1 1 1,1 ,2 ,, ,...,
i i i i M

t p t p t p tσ  =   . The activator of the j-th hidden node, ( )j
tδ  

defined in equation (2), is given by: 

 
( ) ( )

( ) ( )
1

1

,

,

0,  if 0

1,  if 0

j i j

j i j

t p t

t p t

δ

δ

 = <


= >

 with j=1,2,…M. 

The parameter elements, ( )
1i

tρ , consist of the ( )1 M+ -th to the ( )p
n -th elements of ( )

1i
p t . ( )

1i
tρ  is represented as the weights of links 

and biases of the TVNN defined in equation (2): ( )0 tα , ( )j
tβ , ( ),0j

tγ  and ( ), ,j i k
tγ , with i=0,1, …, p,  j=1, 2, …, M  and k=1, 2, …, 5 . ( )

1i
tρ  

are denoted as follow:  

( ) ( ) ( ) ( )
1 1 1 1,1 ,2 ,

, ,...,
pi i M i M i n

t p t p t p tρ + +
 =   ( ) ( ) ( ) ( )0 ,0 , ,, , ,  with 0,1,..., ,  1,2,...,  and 1,2,...,5

j j j i k
t t t t i p j M kα β γ γ = = = =  , 

where ( )p
n M−  is the number of weights, with ( )( )1 5 1

p
n M p M= + + ⋅ + ⋅ .  With i=1,2,…,p and k=1,2,…,5, ( )j

tβ , ( ),0j
tγ  and ( ), ,j i k

tγ  are 

the corresponding weights, which are connected with the j-th hidden nodes. Their values are forced to be zeros, if ( ) 0
j

tδ = . Otherwise, their 

values are the same as the values of the corresponding elements of ( )
1i

tρ , if ( ) 1
j

tδ = . Based on this particle representation, both structure 

and the weights of the TVNN can be kept varying with respect to time, in order to adapt newly-captured traffic flow data. This particle 

representation overcomes the limitation of fixed-connected neural networks for traffic flow forecasting [2, 5, 8, 9, 15], because the neural 

network structures are fixed and cannot be adapted to newly-captured traffic flow data. 

3.2 Multi-swarm Creation Algorithm 

As traffic flow patterns vary with respect to time, the optimal structure and weights of the TVNN also vary with respect to time. To assist the 

APSO to locate this optimum, the multi-swarm creation algorithm, ( )( )multiswarm S t , based on [36], is proposed to be used in the APSO, 

where the multi-swarm creation algorithm has been demonstrated to assist particle swarm optimization approaches for solving time-varying 

problems effectively. The multi-swarm creation algorithm creates sub-swarms, with the particles in each sub-swarm having similar 



characteristics. It is intended to position sub-swarms on different peaks of the time-varying landscape with respect to the structure and 

weights of the TVNN. The aim is to locate effectively the global time-varying optimum. It first creates Ns sub-swarms in which each particle 

is treated as a sub-swarm ( )i
s t  with i=1,2, …, Ns. Then, the two sub-swarms, ( )i

s t  and ( )j
s t , with the smallest distance between them are 

identified by the following equation: 

( )
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
2 2

, , , ,
,

1 1

, min
p

i i j j

nM

i k j k i k j k
p t s t p t s t

k k M

d i j c p t p t p t p t
∈ ∈

= = +

= − + −∑ ∑ ,       (7)  

where i, j  = 1, 2, …, Ns, but ji ≠ . Yang and Li’s [36] algorithm assumes that all elements in the particle have the same priority, which may 

not be appropriate to use here, as two elements, control elements and parameter elements, are used in APSO. Therefore, a priority factor, c>1, 

is introduced to let the control elements have a higher priority than that of the parameter elements, where  ( ),i k
p t  with k=1, 2, … , hmax, are 

the control elements and ( ),j k
p t  with k=1, 2, … , hmax, are the parameter elements. By doing this, the control elements, which can determine 

the structure of the TVNN, can dominate the distance measure. If the total number of particles in ( )i
s t  and ( )j

s t  is not greater than a pre-

defined maximum sub-swarm size, a new merging sub-swarm ( )i
s t  is created by combining the particles in both ( )i

s t  and ( )j
s t . This 

iteration continues until all sub-swarms contain more than one particle. 

Algorithm 2: ( )( )multiswarm S t  

Begin 

Step 1: Create Ns sub-swarm ( )is t  by ( ) ( )i i
s t p t=   with i = 1, 2, …, Ns 

Step 2: Identify a pair of sub-swarms ( )is t  and ( )js t  with i, j  = 1, 2, …, Ns, but i j≠ , which is separated by a shortest 

distance based on equation (7). 

Step 3: If the total number of particles in ( )is t  and ( )js t  is not greater than a pre-defined maximum number of particles 

in a sub-swarm, then 

Step 3.1: Merging ( )is t  and ( )js t  together into a single sub-swarm ( ) ( ) ( ):i i js t s t s t= +  

Step 3.2: Ns= Ns -1 

Step 3.2: Recalculate the distance between all the sub-swarms based on equation (7). 

Step 4: If all ( )is t  with i  = 1, 2, …, Ns, contain more than one particle  

then return ( ( )i
s t  with i  = 1, 2, …, Ns) and terminate 

otherwise goto Step 2 

End 

 

3.3 Particle Updating Algorithm 

When a sub-swarm ( )is t  is created using the above multi-swarm creation algorithm, each particle ( ) ( ) ( ) ( )
1 1 1 1,1 ,2 ,

, ,...,
pi i i i n

p t p t p t p t =  
 with 

( )tis
Ni ,...,2,1

1
=  in ( )i

s t  is updated based on Algorithm 3, ( )( )i
update s t , where 

( )is t
N  is the number of particles in the sub-swarm ( )i

s t . In 

order for a sub-swarm to locate a local peak for the TVNN quickly, each particle in a sub-swarm learns from both the global best positions 

found by itself and the sub-swarms. Each element of ( )
1i

p t , and the velocity vector of the particles, ( ) ( ) ( ) ( )
1 1 1 1,1 ,2 ,

, ,...,
pi i i i n

v t v t v t v t =  
, are 

updated using the inertia weight approach [26]: 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )
1 2 1 2 2 1 2 2 1 21

, , 1 1 , , 2 2 , ,'
ii i i i pbest i i i gbest i i iv t v t rand p t p t rand p t p tω η η= ⋅ + ⋅ ⋅ − + ⋅ ⋅ −      (8) 

 ( ) ( ) ( )
1 2 1 2 1 2, , ,' 'i i i i i ip t p t v t= +             (9) 



where ( )
1 2, '
i i

p t  and ( )
1 2, '
i i

v t  represent the updated element and the updated velocity of the i2-th element of the the i1-th particle respectively;  

( )
,1 ,2 ,1 1 1 1

, ,...,
i i i i np

pbest pbest pbest pbest
p t p p p =   

 is the best elements found so far by the particle, ( )
1i

p t ; ( ) ,1 ,2 ,
, ,...,

pgbest gbest gbest gbest n
p t p p p =  

 is global 

best particle found so far in, ( )is t ; 
1

η  and 
2

η  are the acceleration constants; 
1rand  and 

2
rand  are random numbers generated in the interval 

[0.0, 1.0]; ω  is an inertia weight. After updating each particle, ( )
1i

p t , the fitness of each particle is evaluated based on the cost function. 

When the APSO is in the off-line stage, the particles intend to initialize ( )
off

W T  based on historical traffic flow data. Then, either MAE

hist
e  in 

equation (3) or MAE

hist
e  in equation (4) is used as the cost function. When the APSO is in the on-line stage, the particles intend to generate new 

( )W t  in order to adapt to newly captured data. Then, either MAE

adapte  in equation (5) or RMS

adapte  in equation (6) is used as the cost function. After 

evaluating the fitness of each particle based on the specified cost function, the best particle, ( )
1pbset

p t , and the global best particle, ( )
igbest

p t , 

can be updated. 

       Algorithm 3: ( )( )i
update s t  

Begin 

Step 1: Update the velocity of each particle, ( )
1i

v t , and update each particle, ( )
1i

p t , based on (8) and (9) respectively.  

Step 2: Evaluate the fitness of each particle ( ) ( )
1i i

p t s t∈  with 
( )1 1,2,...,

is t
i N=  based on the cost function: 

If ( )on line
t T −<   

Then either MAE

hist
e  in (3) or MAE

hist
e  in (4) is used as the cost function 

*/ aims to initialize ( )
on line

W T −  based on historical traffic flow data 

*/ MAE

histe  for mean absolute error; MAE

histe  for root mean square error 

Elseif ( )on line
t T −≥  

Then either MAE

adapt
e  in (5) or RMS

adapt
e  in (6) is used as the cost function 

*/ aims to generate new ( )W t  to adapt to newly captured traffic flow data 

*/ MAE

adapte  for mean absolute error; RMS

adapte  for root mean square error 

Endif  

Step 3: Update the best particle ( )
1ipbest

p t  found so far by the particle ( )1ip t : 

If ( )1ip t  is better than ( )
1ipbest

p t   

Then ( ) ( )
1 1ipbest i

p t p t=  

                 Endif 

Step 4: Update the global best particle ( )
igbest

p t  found so far by ( )i
s t : 

If ( )1ip t  is better than ( )
igbest

p t   

Then ( ) ( )1igbest i
p t p t=  

                 Endif 

End 

 

3.4 Change Detection Algorithm 

Change Detection Algorithm ( ) ( )( )( ),on line off line

s
change t t T True− −Π Π − = , uses the global best particle, ( )gbest s

p t T− , over all sub-swarms as 

the monitoring particle to detect whether there is significant change of the characteristics of the newly captured traffic flow data, ( )on line t−Π  

and ( )on line

s
t T−Π − , at time, t ,  and at time, ( )s

t T− , respectively. The fitness of the global best particle is re-evaluated based on the cost 

function either RMS

adapte in equation (5) or MAE

adapte  in equation (6), before it is updated. If the fitness of the global best particle changes significantly, 

this indicates that a significant environmental change occurs. For example, if the TVNN parameters ( )W t  represented by the best particle can 

achieve 80% accuracy for the new traffic flow data captured at time ( )s
t T− , but it can only achieve 20% accuracy for those captured at time 



t, then it is assumed that a significant change to the traffic flow conditions has been detected. If the accuracy obtained by the best particle 

changes only slightly, then it is assumed that no significant change has been detected. 

Algorithm 4: ( ) ( )( ),on line off line

s
change t t T− −Π Π −  

Begin 

Step 1: Identify the global best particle, ( )gbest s
p t T− , from all sub-swarms 

Step 2: If 
( ) ( )( ) ( ) ( )( )

( ) ( )( )

, ,

,

on line on line

adapt gbest s adapt gbest s s

on line

adapt gbest s s

e W t T t e W t T t T

e W t T t T

− −

−

− Π − − Π −

− Π −
 > (pre-defined significant difference) 

*/ where the best TVNN parameters, ( )gbest s
W t T− is represented by ( )gbest s

p t T−  

*/ either RMS

adapt adapte e=  or MAE

adapt adapte e=   

 Then  
Return (True) 

 Else  
Return (False) 

   Endif 

End 

4 Simulation Results 

The performance of the APSO is evaluated by developing the TVNNs based on traffic flow data, which was collected by the two detector 

stations, Re id

on
D and Re id

off
D , at the intersection of Reid Highway and Mitchell Freeway, as well as the three other detector stations, Hutton

on
D , 

Hutton

off
D  and Hutton

on
D , at the intersection of Hutton Road and Mitchell Freeway, Western Australia. Re id

onD and Re id

off
D  are installed at the on-ramp 

and off-ramp of Reid Highway respectively. Hutton

on
D , Hutton

off
D  and Hutton

thr
D , are installed at the on-ramp, off-ramp and through-road of Hutton 

Road respectively. Traffic flow data were collected from Week 6, Week 7, Week 8, Week 9, Week 11 and Week 12 in 2009, for the five 

business days, Monday to Friday, over the 2-hour peak traffic period (7.30 – 9.30 am). Sixty seconds (or one minute) were used as the 

sampling time. When drivers want to travel from Reid Hwy to the Perth City via the Mitchell Freeway, they have to cross the Hutton Road 

intersection. Therefore, it is necessary to forecast traffic flow conditions at the intersection of Hutton Road. As the distance between the 

intersections of Reid Highway and Hutton Road is about 7 kilometers, and the speed limit of the Mitchell Freeway between these two 

locations is 100 kilometer per hour, it usually takes about 0.07 hour (or 4.2 minutes) to travel from Reid Highway to Hutton Road via the 

Mitchell Freeway, when the traffic flow conditions between these two locations is smooth. When a short-term traffic flow predictor is 

available to forecast traffic flow conditions five minutes ahead at the location of Hutton Road, people from Reid Highway can decide 

whether to use the Mitchell Freeway to go to Hutton Road or to reach Hutton Road in another way. Therefore, the short-term traffic flow 

predictor is developed here to forecast the future traffic flow conditions, ˆ Hutton

thro
y , at the location of the detection station, Hutton

off
D  five sampling 

times (or five minutes) ahead. 

Also, we observed that people have different behaviors on different business days. On Monday, people drive more frequently through the 

section between Reid Highway and Hutton Road, during the peak hours. From Tuesday to Thursday, fewer people drive through this section 

during the peak hours than on Monday. On Friday, much fewer people drive through this section. These behaviors of people affect the traffic 

flow conditions of the freeway. Therefore, five networks, namely TVNNMon, TVNNTue, TVNNWed, TVNNThu and TVNNFri, were developed 

by the APSO for forecasting traffic flow for each business day, Monday, Tuesday, Wednesday, Thursday and Friday, respectively. They 

were trained based on the historical traffic flow data collected from their own corresponding business day, and then they were retrained 

based on the newly-captured traffic flow data from their own corresponding business day also. Apart from these five networks, we further 



evaluated whether the APSO can be used in practice to train a network for all the five business days. A single network, namely TVNNAll, was 

also developed for all business days of the week. It was trained based on the traffic flow data collected from all business days, and it was 

retrained based on the newly-captured traffic flow data from all business days. 

To evaluate the performance of all these networks, 6-fold cross validation was used based on these six weeks traffic flow data. The 

traffic flow data for each week was treated as a subsample. We selected the data from five weeks and treated these data as historical traffic 

flow data (i.e. training data), which were used for training the networks by determining the initial TVNN parameters. The data for the 

remaining week were treated as newly-captured data (i.e. test data), which were used for testing the networks by evaluating their 

generalization capability. The cross validation process was repeated 6 times, with each sub-sample being used exactly once for testing the 

networks. The 6 validation results were then averaged to produce a single estimation. For the TVNNMon, the training data collected from 

Monday (from7.30am to 9.30am) were used to determine the initial parameters of the TVNNMon, and the test data collected from Monday 

(from7.30am to 9.30am) were used to evaluate the generalization capability of the TVNNMon. Hence, there were 480 pieces of training data 

were used to determine the initial parameters of TVNNMon, and 120 pieces of test data for evaluating its generalization capability. The same 

was done for the four networks for the other four business days: TVNNTue, TVNNWed, TVNNThu, and TVNNFri. For TVNNall, the training 

data were collected for all the five business days (from 7.30am to 9.30am) for all five weeks, and these training data were used to determine 

the initial parameters of TVNNall. The test data were collected for all the five business days (from7.30am to 9.30am) of the remaining one 

week, and these test data were used to evaluate the generalization capability of TVNNall. Hence, 2400 pieces of data were used for 

determining the initial parameters of TVNNall, and 600 pieces of data for evaluating its generalization capability.  

Both mean absolute error and root mean square error (defined in equations (10) and (11) respectively) were used to evaluate the 

generalization capabilities of the networks. 

 

( ) ( )

( )
1

ˆ
1

100%

TN
Hutton Hutton

thro s thro s

i

Hutton

T thro s

y i T y i T

MAE
N y i T

=

⋅ − ⋅

= ⋅
⋅

∑
,         (10) 

and  
( ) ( )

( )

2

1

ˆ1
100%

T
Hutton HuttonN
thro s thro s

Hutton
iT thro s

y i T y i T
RMSE

N y i T=

 ⋅ − ⋅
= ⋅   ⋅ 

∑         (11) 

( )Hutton

thro s
y i T⋅  is the i-th test data captured by the detection station, Hutton

thr
D , at time ( )s

i T⋅ , where the mean speed of vehicles and the 

density of vehicles were considered; ( )ˆHutton

thro sy i T⋅  is the estimate of traffic flow conditions at the detection station, Hutton

thr
D , which is forecast 

by the TVNN, and the traffic flow data were captured between time, ( ) s
i m p T− − ⋅ , to time, ( ) s

i m T− ⋅ , with 10p =  and 5m = . 
TN  is the 

number of pieces of newly-captured traffic flow data. 

The following parameters are used in the APSO: both the acceleration constants 
1φ  and 2φ were set at 2.05, and the maximum velocity 

maxv  was 0.2, which can be found in reference [13]; the number of particles in the swarm was 70, and the maximum number of particles in 

each swarm is 3, as recommended by [36]; for TVNNMon, TVNNTue, TVNNWed, TVNNThu, and TVNNFri, the maximum number of hidden 

nodes, M , is recommended by [20], where ( )29 log 480M = ≈  and 480 pieces of historical traffic flow data were used for determining the 



initial parameters for these networks. For TVNNAll, the maximum number of hidden nodes , ( )211 log 2400M = ≈ , is used, as there were 2400 

pieces of data for training. For the termination condition of the training stages, the networks keep training by the APSO, until the training 

errors are below 10%. The performance of APSO is compared with a number of PSO algorithms taken from the recent literature. The PSO 

algorithms used for comparison include Pure-PSO [10], Lung-PSO [18], Par-PSO [22] and Black-PSO [4]. Apart from PSO algorithms, a 

commonly used stochastic algorithm such as a genetic algorithm, namely GA was used for comparison, where the operations of the GA can 

be found in [17]. The swarm sizes used on these PSO algorithms and the population size used on the GA algorithms was the same as the 

swarm size used on APSO. Also, the termination conditions used on all these stochastic algorithms are the same as that used on the APSO. 

Apart from these population-based stochastic algorithms, the Kalman filter [21] has also been used to compare with the performance of the 

networks developed by the APSO. Six Kalman filters were developed. Five of the Kalman filters were developed for a particular business 

day (either Monday, Tuesday, Wednesday, Thursday or Friday). One of the six Kalman filters was developed for all business days of the 

week. 
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Figure 3(a) Mean absolute errors for average speeds of vehicles

Figure 3(c) Mean absolute errors for densities of vehicles

Figure 3(b) Root mean square errors for average speeds of vehicles

Figure 3(d) Root mean square errors for densities of vehicles

Figure 3 Cross validation for the algorithms 

All these algorithms were implemented using Matlab 7.7 in a PC which has a CPU of Intel(R) Core(TM)2 Duo 2.66GHz and a memory 

of 7.99GB. Regarding the average speeds of vehicles, the mean absolute errors and the root mean square errors obtained by all the methods 

are shown in Figure 3(a) and (b) respectively. Regarding the densities of vehicles, the errors obtained are also shown in Figure 3(c) and (d) 

respectively. The results obtained by the Kalman filters and the networks developed by all the population-based stochastic algorithms are 

shown in the figures. Results for each individual business day, Monday to Friday, as well as those for all business days are shown. The mean 

absolute errors and root mean square errors in terms of both average speeds and both densities obtained by the networks developed by the 



five PSO algorithms are generally better than those of the GA, which are better than those obtained by the Kalman filters. Of the five PSO 

algorithms (APSO, Pure-PSO, Black-PSO, Par-PSO and Lung-PSO), the proposed APSO is generally the best among the five. Therefore, the 

proposed APSO can generally achieve the best generalization capabilities compared with the other methods. 
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Figure 4(a) Average speed obtained by APSO - week 11 (Monday) Figure 4(b) Average speed obtained by Black-PSO - week 11 (Monday)

Figure 4(d) Density obtained by Black-PSO - week 11 (Monday)Figure 4(c) Density obtained by APSO - week 11 (Monday)  

Figure 4 Simulation results for Monday (week 11) 

The simulation results for Monday (week 11) in terms of average speeds of vehicles and average densities of vehicles are depicted in 

Figure 4. Figure 4(a) shows that from the 1
st
 sample to the 60

th
 sample (about 7.41-8.41 am), the average speeds of vehicles were about 

20km/hours, which is far below the speed limit. Hence, the traffic flow was congested and there was a traffic jam during the time. From the 

80
th

 sample to the 110
th

 sample (about 9.00-9.30 am), the average speeds of vehicles are about 70 to 100 km/hr, which are nearer the speed 

limit. Hence, the traffic flow was smoother and there was no traffic jam during that period of time. Therefore, the data being investigated 

contains traffic jam conditions. Figures 4(a) and 4(b) show the results of average speeds obtained by the proposed APSO and the second best 

algorithm, Black-PSO respectively. By comparing the results obtained by both APSO and Black-PSO, we can see that the better average 

speed estimates can be identified by the APSO than those by the Black-PSO. In general, the results forecast by APSO are more accurate than 

those forecast by Black-PSO. Also, Figure 4(c) and 4(d) shows that better average densities of vehicles can be estimated by the APSO 

comparing with those by the Black-PSO. Therefore, APSO can obtain more accurate results for traffic flow forecasting conditions in terms of 

average speeds and average density of vehicles. 

Also, the computational time in terms of both the off-line stage and on-line stage used on Monday, week 11 were shown in Figure 5 and 

Figure 6 respectively. For the off-line stage, Figure 5 shows the computational time taken by each population-based stochastic method, GA, 

Pure-PSO, Lung-PSO, Par-PSO, Black-PSO, and APSO, to reach the termination condition where the training error with 10% was achieved, 

as well as the time taken on the deterministic method, Kalman filter, to converge. It shows that the Kalman filter needed only about 0.5 



seconds to converge, while the population-based stochastic methods needed more than 220 seconds to reach the termination conditions. For 

the on-line stage, Figure 6 shows that the computational time taken for each iteration when using the population-based stochastic methods, is 

about 2 to 3 seconds, while the computational time taken to adapt the Kalman filter with respect to the newly-captured data is about 0.02 

seconds. Therefore, the computational time taken by Kalman filter is much less than that taken when using the stochastic methods. Even if 

the computational time taken by Kalman filter is much less than those taken by the stochastic methods, the accuracies in term of traffic flow 

forecasting conditions achieved by Kalman filter are poorer than those obtained by the stochastic methods. As accuracy in traffic flow 

forecasting is important, one may still use the population-based stochastic methods to conduct traffic flow forecasting. Figure 6 also shows 

that the computational time taken for each iteration for all population-based stochastic methods, including the proposed APSO is about 2 to 3 

seconds, which is much less than the sampling time of 60 seconds. Therefore, APSO is implementable, in order to adapt traffic flow data 

which is captured with the sample time of 60 seconds. It also shows that the computational time taken to adapt the Kalman filter is much less 

than that used on APSO. Therefore, the Kalman filter can be implemented with a smaller sample time, but the accuracies achieved by APSO 

are better than those obtained by the Kalman filter. The sample time of APSO can be set smaller, if the computational time taken for the 

APSO for one iteration is smaller. To achieve this, the following two approaches can be used: a) the APSO can be implemented on a more 

powerful microprocessor, in order to reduce the computational time; b) the APSO is currently implemented by Matlab, which is a high level 

programming language. If the APSO is implemented by a lower level programming language, the computational time required by the APSO 

is smaller, and thus, shorter sampling times can be used. 
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5 Conclusion  

In this paper, a new algorithm, namely adaptive particle swarm optimization (APSO) based on the mechanisms of particle swarm 

optimization and artificial neural networks, has been proposed to develop short-term traffic flow predictors. It aims to address all the issues 

related to the development of short-term traffic flow predictors, which have not been fully addressed by existing approaches, including: a) 

strongly non-linear characteristics of short-term traffic flow data must be captured; b) large memory space for implementing short-term 

traffic flow predictors is usually not available; c) specification of model structures for short-term traffic flow predictors is required without 

involving trial and error method based on human expertise; d) it is essential to adapt short-term flow predictors to newly-captured traffic 

flow data. 



To address (a), APSO uses simple multi-layer neural networks to develop short-term flow predictors, which can address the strongly 

non-linear characteristics of short-term traffic flow data. Also, these simple multi-layer neural networks need much less memory space than 

that required by the existing hybrid neural networks to develop short-term traffic flow predictors, and thus issue (b) can be addressed. To 

address issue (c), particles of the APSO represent both structures and parameters of short-term traffic flow predictors, such that both optimal 

structures and parameters can be determined automatically without involving trial and error methods based on human expertise. To address 

issue (d), APSO applies the mechanism of multi-swarms, in order to trace effectively the optima of short-term traffic flow predictors which 

vary with respect to newly-captured traffic flow data. The effectiveness of the APSO was evaluated by applying it to the development of 

short-term traffic flow predictors to forecast traffic flow conditions on a section of freeway in Western Australia whose traffic flow data is 

newly captured. The forecasting results obtained by the adaptive short-term traffic flow predictor developed by APSO are more accurate than 

those obtained by the other tested algorithms, Kalman filter, genetic algorithm and particle swarm optimization approaches taken from the 

recent literature. These results clearly demonstrate the effectiveness of the proposed APSO. 
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