1,839 research outputs found

    Effect of aspect ratio on fire resistance of hollow core concrete floors

    Get PDF
    Previous studies have shown that the fire performance of hollowcore units is significantly affected by the end support conditions, but it has not been clear how the fire resistance of the overall floor system can be improved by providing side supports. The previous studies used beam grillage and shell elements to separately model the hollowcore units and the topping concrete slab using the platform of the non-linear finite element program SAFIR. The modelling method required a lot of computational resources and is not ideal to model a large floor area. This paper describes the effect of the side supports and the aspect ratio of the floor on the predicted fire resistance. It also compares the efficiencies of shell elements and short beam elements for finite element modelling of the topping concrete in fire conditions. The results show that integrating the topping concrete slab into the beam grillages reduces the complexity of the model and also provides satisfactory results. Side supports can increase the fire performance of hollowcore floor slabs provided that the spacing of the side supports does not greatly exceed the span length

    Acid-sensing ion channels (ASICs) as pharmacological targets for neurodegenerative diseases

    Get PDF
    A significant drop of tissue pH or acidosis is a common feature of acute neurological conditions such as ischemic stroke, brain trauma, and epileptic seizures. Acid-sensing ion channels, or ASICs, are proton-gated cation channels widely expressed in peripheral sensory neurons and in the neurons of the central nervous system. Recent studies have demonstrated that activation of these channels by protons plays an important role in a variety of physiological and pathological processes such as nociception, mechanosensation, synaptic plasticity, and acidosis-mediated neuronal injury. This review provides an overview of the recent advance in electrophysiological, pharmacological characterization of ASICs, and their role in neurological diseases. Therapeutic potential of current available ASIC inhibitors is discussed

    A visual demonstration of convergence properties of cooperative coevolution

    Get PDF
    We introduce a model for cooperative coevolutionary algorithms (CCEAs) using partial mixing, which allows us to compute the expected long-run convergence of such algorithms when individuals ’ fitness is based on the maximum payoff of some N evaluations with partners chosen at random from the other population. Using this model, we devise novel visualization mechanisms to attempt to qualitatively explain a difficult-to-conceptualize pathology in CCEAs: the tendency for them to converge to suboptimal Nash equilibria. We further demonstrate visually how increasing the size of N, or biasing the fitness to include an ideal-collaboration factor, both improve the likelihood of optimal convergence, and under which initial population configurations they are not much help

    The X10 Flare on 2003 October 29: Triggered by Magnetic Reconnection between Counter-Helical Fluxes?

    Get PDF
    Vector magnetograms taken at Huairou Solar Observing Station (HSOS) and Mees Solar Observatory (MSO) reveal that the super active region (AR) NOAA 10486 was a complex region containing current helicity flux of opposite signs. The main positive sunspots were dominated by negative helicity fields, while positive helicity patches persisted both inside and around the main positive sunspots. Based on a comparison of two days of deduced current helicity density, pronounced changes were noticed which were associated with the occurrence of an X10 flare that peaked at 20:49 UT, 2003 October 29. The average current helicity density (negative) of the main sunspots decreased significantly by about 50. Accordingly, the helicity densities of counter-helical patches (positive) were also found to decay by the same proportion or more. In addition, two hard X-ray (HXR) `footpoints' were observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI} during the flare in the 50-100 keV energy range. The cores of these two HXR footpoints were adjacent to the positions of two patches with positive current helicity which disappeared after the flare. This strongly suggested that the X10 flare on 2003 Oct. 29 resulted from reconnection between magnetic flux tubes having opposite current helicity. Finally, the global decrease of current helicity in AR 10486 by ~50% can be understood as the helicity launched away by the halo coronal mass ejection (CME) associated with the X10 flare.Comment: Solar Physics, 2007, in pres

    Supporting 'design for reuse' with modular design

    Get PDF
    Engineering design reuse refers to the utilization of any knowledge gained from the design activity to support future design. As such, engineering design reuse approaches are concerned with the support, exploration, and enhancement of design knowledge prior, during, and after a design activity. Modular design is a product structuring principle whereby products are developed with distinct modules for rapid product development, efficient upgrades, and possible reuse (of the physical modules). The benefits of modular design center on a greater capacity for structuring component parts to better manage the relation between market requirements and the designed product. This study explores the capabilities of modular design principles to provide improved support for the engineering design reuse concept. The correlations between modular design and 'reuse' are highlighted, with the aim of identifying its potential to aid the little-supported process of design for reuse. In fulfilment of this objective the authors not only identify the requirements of design for reuse, but also propose how modular design principles can be extended to support design for reuse

    Einstein energy associated with the Friedmann -Robertson -Walker metric

    Full text link
    Following Einstein's definition of Lagrangian density and gravitational field energy density (Einstein, A., Ann. Phys. Lpz., 49, 806 (1916); Einstein, A., Phys. Z., 19, 115 (1918); Pauli, W., {\it Theory of Relativity}, B.I. Publications, Mumbai, 1963, Trans. by G. Field), Tolman derived a general formula for the total matter plus gravitational field energy (P0P_0) of an arbitrary system (Tolman, R.C., Phys. Rev., 35(8), 875 (1930); Tolman, R.C., {\it Relativity, Thermodynamics & Cosmology}, Clarendon Press, Oxford, 1962)); Xulu, S.S., arXiv:hep-th/0308070 (2003)). For a static isolated system, in quasi-Cartesian coordinates, this formula leads to the well known result P0=g(T00T11T22T33) d3xP_0 = \int \sqrt{-g} (T_0^0 - T_1^1 -T_2^2 -T_3^3) ~d^3 x, where gg is the determinant of the metric tensor and TbaT^a_b is the energy momentum tensor of the {\em matter}. Though in the literature, this is known as "Tolman Mass", it must be realized that this is essentially "Einstein Mass" because the underlying pseudo-tensor here is due to Einstein. In fact, Landau -Lifshitz obtained the same expression for the "inertial mass" of a static isolated system without using any pseudo-tensor at all and which points to physical significance and correctness of Einstein Mass (Landau, L.D., and Lifshitz, E.M., {\it The Classical Theory of Fields}, Pergamon Press, Oxford, 2th ed., 1962)! For the first time we apply this general formula to find an expression for P0P_0 for the Friedmann- Robertson -Walker (FRW) metric by using the same quasi-Cartesian basis. As we analyze this new result, physically, a spatially flat model having no cosmological constant is suggested. Eventually, it is seen that conservation of P0P_0 is honoured only in the a static limit.Comment: By mistake a marginally different earlier version was loaded, now the journal version is uploade

    Oscillation of the tunnel splitting in nanospin systems within the particle mapping formalism

    Full text link
    The oscillation of tunnel splitting in the biaxial spin system within magnetic field along the anisotropy axis is analyzed within the particle mapping approach, rather than in the (\theta-\phi) spin coherent-state representation. In our mapping procedure, the spin system is transformed into a particle moving in the restricted S1S^1 geometry whose wave function subjects to the boundary condition involving additional phase shift. We obtain the new topological phase that plays the same role as the Wess-Zumino action in spin coherent-state representation. Considering the interference of two possible trajectories, instanton and anti-instanton, we get the identical condition for the field at which tunneling is quenched, with the previous result within spin coherent-state representation.Comment: 11 pages, 1 figure; Some typographical errors have been correcte

    Factor copula models for item response data

    Get PDF
    Factor or conditional independence models based on copulas are proposed for multivariate discrete data such as item responses. The factor copula models have interpretations of latent maxima/minima (in comparison with latent means) and can lead to more probability in the joint upper or lower tail compared with factor models based on the discretized multivariate normal distribution (or multidimensional normal ogive model). Details on maximum likelihood estimation of parameters for the factor copula model are given, as well as analysis of the behavior of the log-likelihood. Our general methodology is illustrated with several item response data sets, and it is shown that there is a substantial improvement on existing models both conceptually and in fit to data

    Morphology of the archaellar motor and associated cytoplasmic cone in Thermococcus kodakaraensis

    Get PDF
    Archaeal swimming motility is driven by archaella: rotary motors attached to long extracellular filaments. The structure of these motors, and particularly how they are anchored in the absence of a peptidoglycan cell wall, is unknown. Here, we use electron cryotomography to visualize the archaellar basal body in vivo in Thermococcus kodakaraensis KOD1. Compared to the homologous bacterial type IV pilus (T4P), we observe structural similarities as well as several unique features. While the position of the cytoplasmic ATPase appears conserved, it is not braced by linkages that extend upward through the cell envelope as in the T4P, but rather by cytoplasmic components that attach it to a large conical frustum up to 500 nm in diameter at its base. In addition to anchoring the lophotrichous bundle of archaella, the conical frustum associates with chemosensory arrays and ribosome‐excluding material and may function as a polar organizing center for the coccoid cells
    corecore