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Factor or conditional independence models based on copulas are proposed for mul-
tivariate discrete data such as item responses. The factor copula models have interpre-
tations of latent maxima/minima (in comparison with latent means) and can lead to
more probability in the joint upper or lower tail compared with factor models based
on the discretized multivariate normal distribution (or multidimensional normal ogive
model). Details on maximum likelihood estimation of parameters for the factor copula
model are given, as well as analysis of the behavior of the log-likelihood. Our general
methodology is illustrated with several item response data sets, and it is shown that
there is a substantial improvement on existing models both conceptually and in fit to
data.

Key words: conditional independence; factor model dependence structure; latent vari-
able model; limited information; partial correlation.

1. Introduction

Latent variable or factor models are a unified tool for the analysis of high-dimensional

response data with dependence coming from latent (unobservable) variables/factors so

that the number of dependence parameters is O(d) rather than O(d2), where d is the

number of observed variables; see for example, Bartholomew et al. (2011). For example, a

questionnaire or instrument, used in psychometrics to assess abstract concepts, such as the

quality of life, conservatism, and general intelligence, may have d ≥ 50 items or questions,

but many questions overlap or are correlated by design. Theoretically, the abstract concept

is low-dimensional, so a latent variable model is reasonable.

In this paper, the main new contribution is the construction of factor or conditional

independence models based on copula functions (distributions with uniform U(0, 1) mar-

gins on the unit interval) for item response variables, Y1, . . . , Yd for d items, where the

items (questions) are measured on an ordinal scale; Yj ∈ {0, . . . ,K − 1} for j = 1, . . . , d.

The p-factor model assumes that Y1, . . . , Yd are conditionally independent given latent
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variables X1, . . . ,Xp; and, hence, the joint probability mass function (pmf) is

πd(y) = Pr(Y1 = y1, . . . , Yd = yd)

=

∫ d∏

j=1

Pr(Yj = yj|X1 = x1, . . . ,Xp = xp) dFX1,...,Xp
(x1, . . . , xp),

where FX1,...,Xp
is the distribution of the latent variable. We will use a general copula

construction, based on a set of bivariate copulas that link observed to latent variables, to

specify Pr(Yj = yj|X1 = x1, . . . ,Xp = xp) and arrive at a very general conditional inde-

pendence or factor model. Discretized multivariate normal (MVN) models with p-factor

correlation matrices (Maydeu-Olivares, 2006) are special cases of our general construction

when all the above bivariate linking copulas are bivariate normal.

A copula approach in psychometrics was recently proposed by Braeken et al. (2007)

and Braeken (2011) who explored the use of Archimedean copulas or a mixture of the in-

dependence and comonotonicity copulas to capture the residual dependence of the Rasch

model. The multivariate probit or discretized MVN model has been in use for a consider-

able length of time in psychometrics (Muthén, 1978), and it can be considered as a special

case of the MVN copula with univariate probit marginals.

If a discretized MVN model with factor dependence structure provides a poor fit,

it could be due to too few factors or because of departure from the assumption that

the (conditional) cumulative response function is the normal distribution (Jöreskog and

Moustaki, 2001). In our general construction with conditional independence, we modify

discretized MVN-based models by replacing bivariate normal copulas between observed

and latent variables with other choices of bivariate copulas. Other choices of copulas are

better if (a) Yj’s have more probability in joint upper or lower tail than would be expected

with a discretized MVN, or (b) Yj ’s can be considered as discretized maxima/minima or

mixtures of discretized means rather than discretized means.

In this paper, we mainly emphasize that if the ordinal variables in item response can

be thought of as discretization of latent random variables that are maxima or minima or

high/low quantiles, then the use of factor models based on copulas can be an improve-

ment both conceptually and in fit to data. In the context of item response data, latent

maxima, minima and means can arise depending on how a respondent considers specific

items. An item might make the respondent think about M past events which, say, have

values W1, . . . ,WM . In answering the item, the subject might take the average, maximum

or minimum of W1, . . . ,WM and then convert to the ordinal scale depending on the mag-

nitude. Less extreme than the maximum or minimum would be high or low quantiles of

values from relevant past events. The case of a latent maxima/minima can occur if the

response is based on a best or worst case. Concrete examples are given in Section 5. For

different dependent items based on latent maxima or minima, multivariate extreme value

and copula theory can be used to select suitable copulas that link observed to latent vari-

ables. Copulas that arise from extreme value theory have more probability in one joint tail

(upper or lower) than expected with a discretized MVN distribution or an MVN copula

with discrete margins. For latent variables that match high or low quantiles of past events,

the same comparison with a discretized MVN can be expected.

If item responses are based on discretizations of latent variables that are means, then
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it is possible that there can be more probability in both the joint upper and joint lower

tail, compared with discretized MVN models. This happens if the respondents consist of

a “mixture” population (e.g., different locations or genders). From the theory of ellipti-

cal distributions and copulas, it is known that some scale mixtures of MVN have more

dependence in the tails.

References that have theory for copulas, extreme value and elliptical distributions are

Joe (1997) and McNeil et al. (2005). The theory and application of copulas have become

important in finance, insurance and other areas, in order to deal with dependence in the

joint tails. Here, we indicate that this can also be important in psychometrics.

The remainder of the paper proceeds as follows. Section 2 has a brief overview of

relevant copula theory and then introduces the factor copula model for discrete ordinal

responses and discusses its relationship with existing models. Section 3 summarizes the as-

sessment of goodness-of-fit of these models using the statistic of Maydeu-Olivares and Joe

(2006), which is based on a quadratic form of the deviations of sample and model-based

proportions over all bivariate margins. Estimation techniques and computational details

are provided in Section 4; included is an analysis of the behavior of the log-likelihood.

Section 5 presents applications of our methodology to three item response data sets. In

these examples, it turns out that our model, with linking copulas selected according to

the items being plausibly based on latent maxima/minima or mixtures of means, provides

better fit than the discretized MVN model with factor dependence structure (also known

as the multidimensional normal ogive model) and also captures the factor dependence

structure. We conclude with some discussion in Section 6. Additional materials, includ-

ing details of computational implementation and pseudo-code for the evaluation of the

joint log-likelihood and the statistic of Maydeu-Olivares and Joe (2006), are provided as

appendices.

2. The factor copula model for ordinal responses

In this section, we construct the factor copula model based on conditional indepen-

dence of ordinal variables Y1, . . . , Yd given latent variables. The general theory is presented

for one and two factors, and the extension to p ≥ 3 factors follows the same approach.

Before that, the first subsection has some background on copula models.

2.1. Overview and relevant background for copulas

A copula is a multivariate cumulative distribution function (cdf) with uniform U(0, 1)

margins. If F is a d-variate cdf with univariate margins F1, . . . , Fd, then Sklar’s (1959)

theorem implies that there is a copula C such that

F (y1, . . . , yd) = C
(
F1(y1), . . . , Fd(yd)

)
.

The copula is unique if F1, . . . , Fd are continuous, but not if some of the Fj have discrete

components. If F is continuous and (Y1, . . . , Yd) ∼ F , then the unique copula is the

distribution of (U1, . . . , Ud) = (F1(Y1), . . . , Fd(Yd)) leading to

C(u1, . . . , ud) = F
(
F−1
1 (u1), . . . , F

−1
d (ud)

)
, 0 ≤ uj ≤ 1, j = 1, . . . , d,
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where F−1
j are inverse cdfs. In particular, if Φd(·; Σ) is the MVN cdf with correlation

matrix Σ and N(0,1) margins, and Φ is the univariate standard normal cdf, then the MVN

copula is

C(u1, . . . , ud) = Φd

(
Φ−1(u1), . . . ,Φ

−1(ud); Σ
)
. (1)

Copulas have become useful for flexible modeling of multivariate data when the variables

Yj are non-normal, examples of which are ordinal and extreme value. In particular, there

are copula families that can lead to more dependence in the joint tail than with the MVN

copula, and these are important for extreme value and risk analysis. The power of copulas

for dependence modeling is due to the dependence structure being considered separate

from the univariate margins; see, for example, Section 1.6 of Joe (1997). If C(·; θ) is a

parametric family of copulas and Fj(·; ηj) is a parametric model for the jth univariate

margin, then

C
(
F1(y1; η1), . . . , Fd(yd; ηd); θ

)

is a multivariate parametric model with univariate margins F1, . . . , Fd. For copula models,

the variables can be continuous or discrete.

For a parametric copula model to be implemented for likelihood inference, a simple

form for C(·; θ) is desired. There are many simple bivariate copula families, but generally

their multivariate extensions have limited dependence structures in comparison with that

available from MVN copulas. In recent years, a popular and useful approach is the vine

pair-copula construction (Aas et al., 2009; Kurowicka and Joe, 2011) which is based on

d(d−1)/2 bivariate copulas, of which most are used to summarize conditional dependence;

a special case occurs if all of these bivariate copulas are normal, and then the parametriza-

tion of an MVN copula is a set of correlations and partial correlations that are algebraically

independent in (−1, 1)d(d−1)/2 .

Inspired by the vine approach, we present general parametric factor copula models,

where for the first factor there are bivariate copulas that couple each observed variable to

the first latent variable, and for the second factor there are copulas that link each observed

variable to the second latent variable conditioned on the first factor (leading to conditional

dependence parameters), etc. These factor models can be explained as truncated canonical

vines rooted at the latent variables; but, more simply, we derive the models as conditional

independence models to show that they are very general. The 1-factor copula model is the

most general possible and the p-factor (p ≥ 2) is the most general with the simplifying

assumption that copulas for conditional distributions do not depend on the values of the

conditioning variables.

The most general factor copula model for continuous variables is in Krupskii and

Joe (2013), where dependence and tail properties are obtained. Our model for item re-

sponse is a discrete counterpart, with implementation details that are quite different.

Other continuous-variable models in the finance literature that are called factor models

(e.g., Section 9.7.2 of McNeil et al. (2005), Hull and White (2004)) have an additive latent

structure and are not as general.
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2.2. 1-factor and 2-factor copula models

Let the cutpoints in the uniform U(0, 1) scale for the jth item/variable be aj,k, k =

1, . . . ,K − 1, with aj,0 = 0 and aj,K = 1. These correspond to aj,k = Φ(αj,k) where αj,k

are cutpoints in the normal N(0, 1) scale.

For the 1-factor model, let X1 be a latent variable, which we assume to be standard

uniform (without loss of generality). From Sklar (1959), there is a bivariate copula CX1j

such that Pr(X1 ≤ x, Yj ≤ y) = CX1j(x, Fj(y)) for 0 ≤ x ≤ 1 where Fj is the cdf of Yj;

note that Fj is a step function with jumps at 0, . . . ,K − 1 and Fj(y) = aj,y+1. Then it

follows that

Fj|X1
(y|x) := Pr(Yj ≤ y|X1 = x) =

∂CX1j(x, Fj(y))

∂x
. (2)

Letting Cj|X1
(a|x) = ∂CX1j(x, a)/∂x for shorthand notation, the pmf for the 1-factor

model is

πd(y) =

∫ 1

0

d∏

j=1

Pr(Yj = yj|X1 = x) dx =

∫ 1

0

d∏

j=1

[
Cj|X1

(Fj(yj)|x)− Cj|X1
(Fj(yj − 1)|x)

]
dx

=

∫ 1

0

d∏

j=1

[
Cj|X1

(aj,yj+1|x)− Cj|X1
(aj,yj

|x)
]
dx =

∫ 1

0

d∏

j=1

fj|X1
(yj|x) dx, (3)

where fj|X1
(y|x) = Cj|X1

(aj,y+1|x)− Cj|X1
(aj,y|x) is the probability of Yj = y conditional

on X1 = x.

For the 2-factor model, consider two latent variables X1,X2 that are, without loss of

generality, independent uniform U(0, 1) random variables. Let CX1j be defined as in the

1-factor model, and let CX2j be a bivariate copula such that

Pr(X2 ≤ x2, Yj ≤ y|X1 = x1) = CX2j(x2, Fj|X1
(y|x1)), 0 ≤ x1, x2 ≤ 1, y = 0, . . . ,K − 1,

where Fj|X1
is given in (2). Here we are making the simplifying assumption that the

conditional copula for the univariate distributions FX2|X1
= FX2

and Fj|X1
does not depend

on x1; this is a model assumption as by Sklar’s theorem there exist such bivariate copulas

that in general depend on x1 ∈ [0, 1]. Then for 0 ≤ x1, x2 ≤ 1,

Pr(Yj ≤ y|X1 = x1,X2 = x2) =
∂

∂x2
Pr(X2 ≤ x2, Yj ≤ y|X1 = x1)

=
∂

∂x2
CX2j(x2, Fj|X1

(y|x1)) = Cj|X2
(Fj|X1

(y|x1)|x2),

where Cj|X2
(a|x) = ∂CX2j(x, a)/∂x for shorthand notation.

The pmf for the 2-factor model is

πd(y) =

∫ 1

0

∫ 1

0

d∏

j=1

Pr(Yj = yj|X1 = x1,X2 = x2) dx1dx2

=

∫ 1

0

∫ 1

0

d∏

j=1

[
Cj|X2

(Fj|X1
(yj|x1)|x2)− Cj|X2

(Fj|X1
(yj − 1|x1)|x2)

]
dx1dx2

=

∫ 1

0

∫ 1

0

d∏

j=1

fX2j|X1

(
x2, yj|x1

)
dx1dx2, (4)
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where fX2j|X1
(x2, y|x1) = Cj|X2

(Fj|X1
(y|x1)|x2) − Cj|X2

(Fj|X1
(y − 1|x1)|x2). The idea in

the derivation of this 2-factor model can be extended to p ≥ 3 factors or latent variables;

the pmf then involves p-dimensional integrals.

For parametric 1-factor and 2-factor models, we let CX1j and CX2j be parametric

bivariate copulas, say with parameters θj and δj , respectively. For the set of all pa-

rameters, let θ = {ajk, θj : j = 1, . . . , d; k = 1, . . . ,K − 1} for the 1-factor model and

θ = {ajk, θj , δj : j = 1, . . . , d; k = 1, . . . ,K − 1} for the 2-factor model. By assuming

X1,X2 to be independent random variables, we model the joint distribution of (Yj ,X1,X2)

in terms of two bivariate copulas rather than one trivariate copula. There is much known

about properties of parametric bivariate copula families in terms of dependence and tail

behavior. Note that the copula CX1j links the jth response to the first latent variable

X1, and the copula CX2j links the jth response to the second latent variable X2 con-

ditional on X1. Figure 1 depicts a graphical representation of the model. Our general

statistical model allows for selection of CX1j and CX2j independently among a variety

of parametric copula families, i.e., there are no constraints in the choices of parametric

copulas {CX1j, CX2j : j = 1, . . . , d}.
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Figure 1.

Graphical representation of the factor copula model.

2.3. Normal ogive model as a special case

In this subsection, we show what happens when all the bivariate copulas are normal

copulas. The resulting model is the same as the discretized MVN model with a p-factor

correlation matrix, also known as the p-dimensional normal ogive model (Jöreskog and

Moustaki, 2001). The relationship is only shown for one and two factors but holds for

p ≥ 3 factors.

The bivariate normal copula cdf from (1) is

C(u1, u2; θ) = Φ2

(
Φ−1(u1),Φ

−1(u2); θ
)
, −1 ≤ θ ≤ 1,

where Φ2 is the bivariate standard normal cdf with correlation parameter θ, and Φ is the
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cdf of the univariate standard normal. Then, for j = 1, . . . , d,

CX1j(x, aj,y+1) = Φ2

(
Φ−1(x),Φ−1(aj,y+1); θj

)
and Cj|X1

(aj,y+1|x) = Φ


αj,y+1 − θjΦ

−1(x)√
1− θ2j


 .

Hence, the pmf for the 1-factor model in (3) becomes

∫ 1

0

d∏

j=1



Φ


αj,yj+1 − θjΦ

−1(x)√
1− θ2j


− Φ


αj,yj

− θjΦ
−1(x)√

1− θ2j





 dx

=

∫ ∞

−∞

d∏

j=1



Φ


αj,yj+1 − θjz√

1− θ2j


−Φ


αj,yj

− θjz√
1− θ2j





 φ(z) dz.

This model is the same as the variant of Samejima’s (1969) graded response IRT model,

known as normal ogive model (McDonald, 1997) with a 1-factor correlation matrix R =

(rjk) with rjk = θjθk for j 6= k. The unidimensional (1-factor) normal ogive model is

Zj = θjZ +
√

1− θ2j ǫj, j = 1, . . . , d,

where Z, ǫ1, . . . , ǫd are independent N(0, 1) random variables, −1 ≤ θj ≤ 1 for all j, and

the connection between the latent variable Zj and the ordinal variable Yj is Yj = y if

αj,y < Zj ≤ αj,y+1, with αj,K =∞ and αj,0 = −∞.

For the 2-factor model,

Cj|X2
(Fj|X1

(y|x1)|x2) = Φ




αj,y+1 − θjΦ

−1(x1)√
1− θ2j

− δjΦ
−1(x2)



/ √

1− δ2j




= Φ



αj,y+1 − θjΦ

−1(x1)− δj

√
1− θ2j Φ

−1(x2)
√

(1− θ2j )(1− δ2j )


 ,

for j = 1, . . . , d. Hence, the pmf for the 2-factor model in (4) becomes

∫ ∫ d
∏

j=1







Φ

(

αj,yj+1 − θjz1 − δj
√

1− θ2j z2
√

(1− θ2j )(1− δ2j )

)

− Φ

(

αj,yj − θjz1 − δj
√

1− θ2j z2
√

(1− θ2j )(1− δ2j )

)







φ(z1)φ(z2) dz1dz2.

This model is the same as the bidimensional (2-factor) normal ogive model with a 2-factor

correlation matrix R = (rjk) with rjk = θjθk + δjδk[(1 − θ2j )(1 − θ2k)]
1/2 for j 6= k. The

bidimensional (2-factor) normal ogive model (e.g., Joreskog and Moustaki, 2001) is

Zj = γj1Z01 + γj2Z02 +
√

1− γ2j1 − γ2j2 ǫj, j = 1, . . . , d,

where,

γj1 = θj and γj2 = δj(1− θ2j )
1/2, (5)

Z01, Z02, ǫ1, . . . , ǫd are independent N(0, 1) random variables and 0 ≤ γ2j1 + γ2j2 ≤ 1 for all

j. The parameter θj of CX1j is the correlation of Zj with Z01, and the parameter δj of CX2j

is the partial correlation between Zj and Z02 given Z01. The off-diagonal entries of the
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correlation matrix have the form γj1γk1 + γj2γk2, j 6= k. This extends to a p-factor model

(p < d) with correlation matrix ΓΓ⊤+Ψ, where Γ is a d× p matrix of loadings and Ψ is a

diagonal matrix of “uniqueness” variances. The loading matrix Γ is not unique, because of

invariance to rotations, ΓΓ⊤ = ΓPP⊤Γ⊤, where P is an orthogonal p× p matrix. For the

bidimensional (2-factor) normal ogive model the 2d parameters can be converted to 2d−1

parameters yielding the same latent correlation matrix, by applying a Givens (orthogonal)

rotation P =

(
ω

√
1− ω2

−
√
1− ω2 ω

)
with appropriate ω so that (γj1, γj2)P = (γ∗j1, 0) so

that γ∗j2 = 0 and δ∗j = 0 after the rotation.

2.4. Other choices of bivariate copulas with latent variables

We next proceed with a summary of choices of some other bivariate copula fami-

lies that can be used when considering latent maxima, minima or mixtures. In the de-

scriptions below, a bivariate copula C is reflection symmetric if its density c(u1, u2) =

∂2C(u1, u2)/∂u1∂u2 satisfies c(u1, u2) = c(1 − u1, 1 − u2) for all 0 ≤ u1, u2 ≤ 1. Oth-

erwise, it is reflection asymmetric often with more probability in the joint upper tail or

joint lower tail. Upper tail dependence means that c(1 − u, 1 − u) = O(u−1) as u → 0

and lower tail dependence means that c(u, u) = O(u−1) as u → 0. Copulas that arise

from multivariate extreme value theory have upper tail dependence. Under some regular-

ity conditions, no upper tail dependence means that c(1 − u, 1 − u) = O(uκ−2) as u → 0

for some κ > 1. If (U1, U2) ∼ C for a bivariate copula C, then (1−U1, 1−U2) ∼ CR, where

CR(u1, u2) = u1+u2−1+C(1−u1, 1−u2) is the survival copula of C; this “reflection” of

each uniform U(0, 1) random variable about 1/2 changes the direction of tail asymmetry.

Choices that we consider are the following:

(a) Reflection asymmetric copula family with upper tail dependence, such as the Gumbel

extreme value copula with cdf

C(u1, u2; θ) = exp
[
−
{
(− log u1)

θ + (− log u2)
θ
}1/θ]

, θ ≥ 1.

The resulting model in this case has latent (ordinal) variables that can be considered

as (discretized) maxima, and there is more probability in the joint upper tail.

(b) Reflection asymmetric copula family with lower tail dependence, such as the survival

Gumbel (s.Gumbel) copula with cdf

C(u1, u2; θ) = u1 + u2 − 1 + exp
[
−
{(
− log(1− u1)

)θ
+
(
− log(1− u2)

)θ}1/θ]
, θ ≥ 1.

The resulting model in this case has latent (ordinal) variables that can be considered

as (discretized) minima, and there is more probability in the joint lower tail.

(c) Copulas with reflection symmetric upper and lower tail dependence, such as the bivari-

ate Student tν copula with cdf

C(u1, u2; θ) = T2

(
T−1(u1; ν), T

−1(u2; ν); θ, ν
)
, −1 ≤ θ ≤ 1,

where T (; ν) is the univariate Student t cdf with (non-integer) ν degrees of freedom,

and T2 is the cdf of a bivariate Student t distribution with ν degrees of freedom and

correlation parameter θ. The resulting model in this case has latent (ordinal) variables
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that can be considered as mixtures of (discretized) means, since the bivariate Student

t distribution arises as a scale mixture of bivariate normals. A small value of ν, such as

1 ≤ ν ≤ 5, leads to a model with more probabilities in the joint upper and joint lower

tails compared with the normal copula.

For the normal ogive model, the model parameters control the shape of the item

characteristic curves (ICCs). For the factor copula models, ICCs can be computed (curves

for one factor, surfaces for two factors), but their shape also depends on the choice of

linking copulas. In Figure 2 we plot the ICCs for the item Yj ∈ {0, 1, 2},

Pr(Yj = y|X1 = x) = Cj|X1
(Fj(y)|x; θj)− Cj|X1

(Fj(y − 1)|x; θj), y = 0, 1, 2,

from the 1-factor copula model with normal, Gumbel, s.Gumbel, and t2 copulas with the

same model parameters aj,1 = 1/3, aj,2 = 2/3 and θj (in the Kendall’s τ scale). We convert

from τj = 0.5 to the normal/t2 and Gumbel/s.Gumbel parameter θj via the relations

θj = sin(πτj/2) (6)

and

θj = (1− τj)
−1 (7)

in Hult and Lindskog (2002) and Genest and MacKay (1986), respectively. As the form of

the copulas changes, typically the middle part of the ICC is similar, but can differ more

for extreme values of the latent variable because of different tail behavior of the bivariate

copulas.

For this paper, the above copula families are sufficient for the applications in Section 5.

Many other parametric copula families are given in Joe (1997). If one is mainly concerned

with using many options for factor copula models, there are many other choices that can

be considered. The above list represents a few choices with ease of interpretation for item

response data.

3. Assessing goodness-of-fit

Different parametric copula models can be compared via the log-likelihood at the

maximum likelihood estimate or via the Akaike information criterion. In addition, for an

overall goodness-of-fit of the discrete factor models, we will use the limited information

method proposed by Maydeu-Olivares and Joe (2006), and we summarize the method in

this section.

Consider the set of univariate and bivariate residuals that do not include category 0.

This is a residual vector of dimension s = d(K − 1) +
(d
2

)
(K − 1)2. For our parametric

model with parameter vector θ of dimension q, let π2(θ) =
(
π̇1(θ)

⊤, π̇2(θ)
⊤
)⊤

be the

column vector of the model-based marginal probabilities with π̇1(θ) the d(K − 1) vector

of univariate marginal probabilities, and π̇2(θ) the
(
d
2

)
(K−1)2 vector of bivariate marginal

probabilities. Also, let p2 = (ṗ⊤
1 , ṗ

⊤
2 )

⊤ be the vector of the observed sample proportions,

with ṗ1 the d(K − 1) vector of univariate marginal proportions, and ṗ2 the
(d
2

)
(K − 1)2

vector of the bivariate marginal proportions.

With a sample size N , the limited information statistic M2 is given by

M2 = M2(θ̂) = N
(
p2 − π2(θ̂)

)⊤
C2(θ̂)

(
p2 − π2

(
θ̂)
)
, (8)
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Figure 2.

Shape of the ICCs for item Yj ∈ {0, 1, 2} from the 1-factor copula model with normal, Gumbel,
s.Gumbel, and t2 copulas with the same model parameters aj,1 = 1/3, aj,2 = 2/3 and θj (in the
Kendall’s τ scale).

with

C2(θ) = Ξ−1
2 −Ξ−1

2 ∆2(∆
⊤
2 Ξ

−1
2 ∆2)

−1∆⊤
2 Ξ

−1
2 = ∆

(c)
2

(
[∆

(c)
2 ]⊤Ξ2∆

(c)
2

)−1
[∆

(c)
2 ]⊤, (9)

where ∆2 = ∂π2(θ)/∂θ
⊤ is an s× q matrix with the derivatives of all the univariate and

bivariate marginal probabilities with respect to the model parameters, ∆
(c)
2 is an s×(s−q)

orthogonal complement to ∆2, such that [∆
(c)
2 ]⊤∆2 = 0, and Ξ2 = NCov(p2) is the

s × s covariance matrix of all the univariate and bivariate marginal sample proportions,

excluding category 0. Due to equality in (9), C2 is invariant to the choice of orthogonal

complement. The limited information statistic M2 has a null asymptotic distribution that

is χ2 with s− q degrees of freedom when the estimate θ̂ is
√
N -consistent.

The covariance matrix can be derived by noticing that each Yj has a Multinomial(1,

πj0, . . . , πj,K−1) distribution, where πjy = Pr(Yj = y). Hence, the joint distribution of
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Y1, . . . , Yd is multivariate multinomial with univariate margins that are multinomial and

thus

Ξ2 = diag(π2(θ))− π2(θ)π2(θ)
⊤.

Note that the computation of Ξ2 involves the computation of up to 4-dimensional proba-

bilities. The matrix ∆2 consists of the derivatives of the univariate and bivariate estimated

probabilities with respect to the model parameters θ. In Appendix A, Table A.1 lists the

derivatives of the univariate probability, πjy = Pr(Yj = y) = aj,y+1 − aj,y, with respect

to the cutpoint ajk, and of the bivariate probability, πj1j2,y1y2
= Pr(Yj1 = y1, Yj2 = y2),

with respect to the cutpoint ajk and the copula parameter θj for the 1-factor model; Table

A.2 lists the derivatives of the bivariate probability πj1j2,y1y2
with respect to the cutpoint

ajk, and the copula parameter θj for the first latent variable, and the copula parameter

δj for the second latent variable for the 2-factor model for j, j1, j2 = 1, . . . , d, y, y1, y2 =

1, . . . ,K − 1, and k = 1, . . . ,K − 1. Computational details and pseudo-code for the evalu-

ation of Ξ2 and ∆2 are given in the Appendices B and C, respectively.

4. Behavior of log-likelihood and computational details

In this section, we discuss estimation techniques and computational details. We give

details on the behavior of the log-likelihood for the 2-factor copula model and discuss cases

when the model with 2d copulas is identifiable or has near non-identifiability.

For a sample of size N with data y1, . . . ,yN , the joint log-likelihood of the factor

copula model is

ℓ(θ) =

N∑

i=1

logπd(yi;θ). (10)

Maximization of (10) is numerically possible but is time-consuming for large d because

of many univariate and dependence parameters. When the dependence is not too strong,

which is a realistic scenario for item response data, a two-step approach such as in Ols-

son (1979), called Inference Function of Margins (IFM) method in Joe (1997, 2005), can

efficiently (in the sense of computing time and asymptotic variance) estimate the model

parameters. In the first step, the univariate cutpoints are estimated as

âj0 = pj0, âj1 = pj0 + pj1, . . . , âj,K−1 = pj0 + pj1 + . . .+ pj,K−1, (11)

where pjy, y = 0, . . . ,K − 1, for j = 1, . . . , d are the univariate sample proportions; and

in the second step the joint log-likelihood (10) is maximized over the copula parameter

vector with the cutpoints fixed at the estimated values from the first step. For the second

step, a quasi-Newton or modified Newton-Raphson method can be used, even for large

d. The likelihood estimation is especially very fast and stable for the 1-factor model. For

the 2-factor model, one should try using different starting points in the maximization

algorithm, when computing maximum likelihood estimates, to ensure that a global opti-

mum is obtained. Details for the computational implementation and pseudo-code for the

likelihood evaluation in (10) are given in the Appendices B and C, respectively.
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4.1. Behavior of the log-likelihood for the 2-factor copula model

For the special case of the normal ogive model with 2 factors, one of the copulas in

the set {CX2j} can be set as an independence copula without loss of generality, because

the model with 2d parameters is not identifiable. What happens if other copulas such

as Gumbel and tν are used for bivariate linking copulas? Is the model with 2d bivariate

linking copulas still not identifiable? The purpose of this section is to provide answers to

such questions.

Given that near non-identifiability occurs when there are large standard errors (SEs)

in parameter estimates, we will compare the asymptotic covariance matrix of the maximum

likelihood estimate θ̂ between a model with 2d bivariate linking copulas and a model with

2d − 1 bivariate linking copulas where one of the CX2j ’s is the independence copula. By

using the asymptotic covariance matrices, we do not need time-consuming Monte Carlo

simulations for comparisons; and we can quickly vary factors such as parametric family of

copulas CX1j , CX2j, dimension d, θ values, number of categories K and see the effects.

For known θ, the Fisher information matrix for the parameter θ is given by

I =
∑

y

∂πd(y;θ)

∂θ

∂πd(y;θ)

∂θT

/
πd(y;θ),

where the inner sum is taken over all the possible vectors y. The partial derivatives are

similar in form to those in Table A.2. Under regularity conditions, the inverse of I is the

asymptotic covariance matrix of the maximum likelihood estimate θ̂ (Lehmann, 1998, p.

545). To get the magnitudes to be interpretable, we scale the asymptotic SEs (the square

root of the diagonal of the inverse of I) by 1/
√
n, where n is the nominal sample size.

Note that asymptotic SEs are not so meaningful since one does not know how large the

sample size needs to be before the approximations provided by the asymptotic results are

adequate in practice. Results reported by de Menezes (1999) show that the asymptotic

theory may provide a very poor approximation, even if the sample size is of the order of

1000. Nevertheless, the theoretical comparison of 2d versus 2d− 1 parameters is valid.

To make 2-factor copula models with 2d and 2d − 1 parameters comparable and

also with tν versus Gumbel, for a given number of ordinal categories (assumed uniformly

distributed), we selected random choices of copula parameters as described below:

2d tν copulas: the random choices for the parameters θj were simulated from N(0.6, 0.12)

and for the parameters δj were simulated from N(0.3, 0.12) for j = 1, ..., d.

(2d− 1) tν copulas: The 2d parameters at the preceding step were converted to 2d − 1

parameters with the same dependence as indicated below:

1. The factor copula parameters were converted to loadings via (5).

2. A Givens rotation was applied in order to get the rotated loadings γ∗j1, γ
∗
j2, with

the last loading for the second factor set to 0.

3. The rotated loadings are converted back to new factor copula parameters θ∗j , δ
∗
j

via, θ∗j = γ∗j1 and δ∗j = γ∗j2/(1− θ∗2j )1/2.

2d Gumbel copulas: Each parameter of 2d tν copulas was converted to Kendall’s tau

via the functional inverse of (6), and then from Kendall’s tau to Gumbel parameter
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with the relation in (7). Note that in this way both models have the same copula

parameters in the Kendall’s tau scale.

(2d− 1) Gumbel copulas: The factor copula parameters θ∗j , δ
∗
j in 2d−1 tν copulas were

converted to Kendall τ ’s and then to Gumbel parameters. Negative τ values were

converted to positive, since Gumbel copulas can model only positive dependence.

Note that in this way the overall dependence is still about the same.

The random factor copula parameters as described above are exchangeable so that

the average of the asymptotic SEs leads to the same value for each parameter of Factor

1 and Factor 2. Table 1 summarizes the average asymptotic SEs for each factor over 50

repetitions; the asymptotic SEs are scaled using n = 104.

Table 1.

Asymptotic SEs for models with 2d and 2d− 1 bivariate linking copulas scaled for a sample of
size n = 104; d=number of items, K=number of categories (assumes equally weighted); ASE1
and ASE2 are averages of the asymptotic SEs for the first factor and second factor, respectively.

d = 7,K = 3 d = 7,K = 6 d = 10, K = 3
Model ASE1 ASE2 ASE1 ASE2 ASE1 ASE2

2d Gumbel 0.069 0.071 0.051 0.052 0.048 0.050
2d− 1 Gumbel 0.036 0.066 0.028 0.048 0.029 0.046

2d t1 0.020 0.063 0.015 0.047 0.015 0.046
2d− 1 t1 0.012 0.108 0.010 0.086 0.010 0.075

2d t2 0.029 0.084 0.023 0.064 0.020 0.056
2d− 1 t2 0.014 0.106 0.011 0.086 0.010 0.071

2d t3 0.042 0.122 0.031 0.089 0.027 0.079
2d− 1 t3 0.014 0.109 0.012 0.085 0.010 0.071

2d t4 0.063 0.184 0.045 0.129 0.040 0.119
2d− 1 t4 0.015 0.111 0.012 0.086 0.010 0.071

2d t5 0.093 0.273 0.063 0.183 0.060 0.176
2d− 1 t5 0.016 0.114 0.012 0.086 0.010 0.071

2d t7 0.179 0.531 0.112 0.329 0.115 0.343
2d− 1 t7 0.016 0.116 0.012 0.088 0.010 0.072

2d t10 0.366 1.089 0.196 0.580 0.232 0.696
2d− 1 t10 0.016 0.118 0.013 0.091 0.010 0.072

2d t20 0.853 2.555 0.285 0.847 0.530 1.595
2d− 1 t20 0.017 0.121 0.013 0.095 0.010 0.072

From the results, a model with 2d Gumbel or tν copulas with ν ≤ 3 is clearly identifi-

able. For 2d tν copulas there is much variability for ν ≥ 5, and the usage of one indepen-

dence copula for the second factor leads to smaller asymptotic SEs for the first factor. Note

that for this case we have also checked, using the Jacobian of the transformation, that the

variability of factor correlations is small and similar for the various choices of the degrees

of freedom. For the factor model with 2d tν copulas with larger values of ν, the correlation

matrix based on the parameters is stable, even though the copula parameters (especially

for the second factor) are not so interpretable. Another pattern is that the asymptotic SEs

decrease as the dimension and/or the number of ordinal categories increase. The latter

means that a part of near non-identifiability is due to discretization.

These summaries agree with what we see in fit to data sets with sample size 500–1000.

For tν with ν small or for Gumbel, there appears to be a single global/local maximum

to the log-likelihood in that the same convergence is obtained in numerical optimization

from different starting points. What this means is that if the factor copula model with
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tν (ν ≤ 3) or Gumbel linking copulas is a good fit, then the “loading” parameters are

identifiable and can be interpreted without a need for something like a varimax transform

(Kaiser, 1958) of the loading matrix.

For tν with larger values of ν, when there are large standard errors (SEs) in parameter

estimates and/or the latter are greater than 0.9 in the Kendall’s tau scale, that might

indicate that the model with 2d copulas is nearly non-identifiable and there is a direction

for which the log-likelihood is quite flat; there are local maxima to the log-likelihood and

different convergence values are obtained from different starting points. For such cases, we

can set one of the CX2j’s to be an independence copula, i.e., use 2d − 1 copulas, in order

to avoid the local maxima issues and make the parameter estimates interpretable.

5. Applications

In this section we illustrate the factor copula models for item response data sets.

For a preliminary analysis, the bivariate copulas are applied to each of the pair of items

to compare observed versus model-based bivariate counts. Then, we fit the discrete factor

models with normal (this is the special case of the normal ogive model), Gumbel, s.Gumbel,

and tν bivariate linking copulas. For Student tν , choices of ν were 1, 2, . . . , 10. For ease of

interpretation, we do not mix Gumbel, tν and normal for a single factor; hence, for the 2-

factor models we allow two different copula families, one for Factor 1 and one for Factor 2.

Note that Gumbel copulas for both factors means that conditional dependence is positive

only; Gumbel for Factor 1 and tν for Factor 2 allow for conditional negative dependence

of items and latent variable 2 given latent variable 1. The conditional standard errors

(SEs) of the estimated parameters are obtained by the inversion of the Hessian matrix at

the second step of the IFM method. These SEs are adequate to assess the flatness of the

log-likelihood. Proper SEs that account for the estimation of cutpoints can be obtained

by jackknifing the two-stage estimation procedure. To make it easier to compare strengths

of dependence, we convert the estimated parameters to Kendall’s τ ’s in (0, 1) via the

functional inverse of (6) for elliptical copulas and via the functional inverse of (7) for

Gumbel copulas; SEs are also converted via the delta method. Note that Kendall’s tau

only accounts for the dependence dominated by the middle of the data, and it is expected

to be similar amongst different families of copulas. However, the tail dependence varies, as

explained in Subsection 2.4, and is a property to consider when choosing amongst different

families of copulas.

For the 1-factor model with tν we summarize the choice of integer ν with the largest

log-likelihood, while for the 2-factor models we summarize the first three models in terms of

largest likelihood along with the bidimensional normal ogive model as a baseline. For this

(normal ogive) model, to obtain a unique solution we must impose sufficient constraints.

One parameter for the second factor can be set to zero and the likelihood can be maximized

with respect to other 2d−1 parameters. We report the varimax transform of the loadings (a

reparametrization of 2d parameters), converted to factor copula parameters (and Kendall’s

taus), as these τ ’s might be more comparable with the maximum likelihood estimates from

copula-based factor models. Note also that, in terms of identifiability of signs of parameters,

the factor copula model based on tν is like that based on normal. If θj → −θj, j = 1, . . . , d

or if δj → −δj , j = 1, . . . , d, then the model is the same, because only the orientation of the
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latent variable has been reversed. For simplicity, we report these correlation parameters as

being positive for stronger dependence. In addition, we summarize the M2 statistics from

(8). Note that the M2 statistics in the case with 2d− 1 copulas (one set to independence

for the second factor) are computed with ∆2 having one less column.

5.1. LOT item response data

The first example deals with the Life Orientation Test (LOT) scale (Scheier and

Carver, 1985) which consists of twelve 5-point rating items designed to measure gener-

alized outcome expectancies. The sample of N = 389 is based on a survey of university

male and female undergraduate students from Carnegie-Mellon University and the Uni-

versity of Miami. Students were asked to respond to each item using one of five categories:

“0=strongly disagree”; “1=disagree”; “2=neutral”; “3=agree”; “4=strongly agree”. Chang

et al. (1994) analyzed the following items, Y1: In uncertain times, I usually expect the best;

Y2: I always look on the bright side of things; Y3: I’m always optimistic about my future;

Y4: I’m a believer in the idea that “every cloud has a silver lining”; Y5: If something can

go wrong for me, it will; Y6: I hardly ever expect things to go my way; Y7: Things never

work out the way I want them to; Y8: I rarely count on good things happening to me.

We will analyze these item response data with N = 389, with the scoring of the

last 4 items reversed, so that all items are positively correlated; the positive correlation

is needed for Gumbel copulas, which only have positive dependence. Note that the four

positively worded items measure optimism, while the four negatively worded items measure

pessimism.

For these items, a respondent might be thinking about the average “sensation” of many

past relevant events, leading to latent means. That is, based on the item descriptions, this

seems more natural than a discretized maxima or minima. Since the sample is a mixture

(male and female students, and two locations) we can expect a priori that a factor copula

model with tν copulas might be plausible, as in this case the items can be considered as

mixtures of discretized means.

The summary of findings for the preliminary analysis show that there is more proba-

bility in the joint upper and lower tails than with a discretized MVN, suggesting that a

factor model with bivariate Student tν linking copulas might provide a better fit. Some rep-

resentative results, for margin (5, 6), are presented in Table 2. Table 3 gives the estimated

parameters, their standard errors (SE) in Kendall’s tau scale, and joint log-likelihoods ℓ

for the 1-factor and 2-factor models; and Table 4 presents the M2 statistics and corre-

sponding p-values along with the maximum deviations of observed and expected counts

for each bivariate margin, that is, Dj1j2 = N maxy1,y2
|pj1,j2,y1,y2

− πj1,j2,y1,y2
(θ̂)|, to show

where the fit is improving relative to the normal ogive model.

For these results, in 1-factor models, the weakest dependence can be found in the

copula CX14(·; θ4) linking the latent variable and the fourth item. The strongest depen-

dence can be found in the copula CX16(·; θ6) linking the latent variable and the sixth item.

The best fit for the 1-factor model is based on t2 linking copulas, where there is a big

improvement over the normal ogive model. However, it is revealed that one latent variable

is not adequate to model the dependencies among the items (Table 4, 1-factor model).

In the 2-factor models dependence parameter estimates, we report the best three
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Table 2.

Diagnostics for Items 5 and 6 for the LOT response data, based on the fit of the bivariate
normal, Gumbel, s.Gumbel, and t5 copulas, at each of the pair of items, comparing observed
versus model-based bivariate counts with an emphasis on the tails.

Y5 Y6 observed normal Gumbel s.Gumbel t5
0 0 7 5 4 9 7
0 1 7 8 8 9 9
0 2 4 7 7 4 5
0 3 5 4 5 2 3
0 4 1 0 0 0 1
1 0 2 6 6 4 5
1 1 28 20 20 23 22
1 2 29 28 29 30 30
1 3 20 31 31 28 28
1 4 10 4 3 5 4
2 0 3 2 3 1 1
2 1 9 13 14 10 11
2 2 37 28 29 29 30
2 3 52 52 54 54 56
2 4 7 12 8 14 10
3 0 0 1 1 0 1
3 1 2 7 7 5 6
3 2 15 21 19 21 19
3 3 89 73 75 75 77
3 4 33 37 36 37 37
4 0 2 0 0 0 0
4 1 2 0 0 1 1
4 2 0 1 1 2 1
4 3 6 11 6 13 8
4 4 19 16 22 14 19

models based on the joint log-likelihood which are all built with bivariate tν copulas with

ν = 2 for the first factor and ν = 7 or 8 or 9 for the second factor. The improvement over

the bidimensional normal ogive model is substantial for these models (Table 4, 2-factor

model). However, it is not so clear from the goodness-of-fit p-values, that the response

patterns are satisfactorily explained by two latent variables. The discrepancy of 14/389

maximum occurs with a larger count. For the last 4 reversed items, there are more counts

in vectors of the form {Y5 = ·, Y6 = 3, Y7 = 3, Y8 = 3} and {Y5 = ·, Y6 = ·, Y7 = 2, Y8 = 2}
than expected with the models and less in {Y5 = ·, Y6 = ·, Y7 = 3, Y8 = 2}. The overall

model fit is not bad except for this. Note that either a discrete 3-factor model or a 3-factor

model with a special structure known as bifactor model (see, e.g., Gibbons and Hedeker,

1992) does not improve the fit.

In this example, it is highlighted that a factor model with tν copulas is plausible for a

population that is a mixture of subpopulations, while a normal model might be adequate

for smaller homogeneous subgroups. For the 2-factor model based on tν copulas with small

ν, note that, without the need for a varimax rotation, the unique loading matrix shows

that one factor is loaded mainly on Items 1–4 and the other factor is loaded mainly on

Items 5–8. This was expected from the ‘optimistically’ and ‘pessimistically’ worded items.

5.2. Science item response data

This data set comes from the Consumer Protection and Perceptions of Science and

Technology section of the 1992 Euro-Barometer Survey based on a sample of N = 392 from
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Table 3.

Estimated parameters (Est.), their standard errors (SE) on Kendall’s tau scale, and joint
log-likelihoods for the discrete factor models built by normal, Gumbel, s.Gumbel, and tν bivariate
linking copulas for the LOT item response data.

1-factor normal Gumbel s.Gumbel t2
Est. SE Est. SE Est. SE Est. SE

θ1 0.27 0.03 0.24 0.04 0.28 0.03 0.24 0.04
θ2 0.34 0.03 0.31 0.04 0.35 0.03 0.34 0.04
θ3 0.33 0.03 0.33 0.04 0.32 0.03 0.33 0.04
θ4 0.21 0.04 0.20 0.04 0.20 0.04 0.19 0.04
θ5 0.43 0.03 0.46 0.03 0.45 0.03 0.47 0.04
θ6 0.66 0.03 0.72 0.03 0.66 0.03 0.74 0.03
θ7 0.63 0.03 0.67 0.03 0.61 0.03 0.65 0.03
θ8 0.50 0.03 0.54 0.03 0.51 0.03 0.58 0.03

ℓ -3902.1 -3895.1 -3863.5 -3799.4

2-factor normal t2/t7 t2/t8 t2/t9
Est. Est. SE Est. SE Est. SE

θ1 0.09 0.13 0.05 0.13 0.05 0.13 0.05
θ2 0.11 0.18 0.06 0.17 0.06 0.17 0.06
θ3 0.15 0.20 0.05 0.20 0.05 0.20 0.05
θ4 0.10 0.13 0.05 0.13 0.04 0.13 0.04
θ5 0.43 0.49 0.04 0.49 0.04 0.49 0.04
θ6 0.61 0.74 0.04 0.74 0.04 0.74 0.04
θ7 0.66 0.70 0.03 0.70 0.03 0.69 0.03
θ8 0.44 0.54 0.04 0.54 0.04 0.54 0.04
δ1 0.46 0.44 0.04 0.44 0.04 0.44 0.04
δ2 0.65 0.64 0.05 0.64 0.05 0.64 0.05
δ3 0.47 0.46 0.04 0.46 0.04 0.46 0.04
δ4 0.26 0.25 0.04 0.25 0.04 0.25 0.04
δ5 0.12 0.07 0.07 0.07 0.07 0.07 0.06
δ6 0.33 0.25 0.12 0.25 0.11 0.26 0.11
δ7 0.23 0.14 0.11 0.15 0.10 0.15 0.10
δ8 0.24 0.19 0.07 0.20 0.07 0.20 0.07

ℓ -3800.7 -3694.4 -3694.4 -3694.4

Great Britain; see Rizopoulos (2011) and the references therein. The questions (items)

asked are, Y1: Science and technology are making our lives healthier, easier and more

comfortable; Y2: Scientific and technological research cannot play an important role in

protecting the environment and repairing it; Y3: The application of science and new tech-

nology will make work more interesting; Y4: Thanks to science and technology, there will

be more opportunities for the future generations; Y5: New technology does not depend on

basic scientific research; Y6: Scientific and technological research do not play an important

role in industrial development; Y7: The benefits of science are greater than any harmful

effect it may have. All of the items were measured on a four-group scale with response

categories “0=strongly disagree”, “1=disagree to some extent”, “2=agree to some extent”

and “3=strongly agree”.

For some items such as the first three, it is plausible that a respondent might be

thinking about the maximum benefit (or a high quantile) of many past events. For example,

for Item 1, a participant might reflect on past relevant events where science and technology

improved her/his life; then by considering the best case, i.e., the event where the positive

effect of science and technology in her/his life was substantial, s/he chooses an appropriate

ordinal response. For some of the other items, one might consider a median or less extreme

benefit of past relevant events. To sum up, the items appear to be a mixed selection between
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Table 4.

M2 statistics and corresponding p-values along with some summaries for bivariate margins
(Dj1j2) for the discrete factor models built by normal, Gumbel, s.Gumbel, and tν bivariate
linking copulas for the LOT item response data. Sample size N = 389.

Model 1-factor 2-factor
normal Gumbel s. Gumbel t2 normal t2/t7 t2/t8 t2/t9

M2 1178.8 1074.0 1115.9 809.9 959.2 573.6 573.3 573.1
df 440 440 440 440 433 432 432 432

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

D12 20 21 18 18 9 6 6 6
D13 15 17 14 14 10 8 8 8
D14 8 9 8 7 5 5 5 5
D15 10 9 11 11 10 12 11 11
D16 9 10 8 8 10 9 9 9
D17 5 7 5 8 5 7 7 7
D18 12 11 11 9 12 9 9 9
D23 21 22 19 17 10 6 7 7
D24 13 14 12 11 8 9 8 8
D25 13 13 11 9 15 11 11 11
D26 7 10 7 9 8 7 7 7
D27 10 12 8 11 13 12 12 12
D28 9 9 9 8 9 8 8 8
D34 7 6 8 5 5 4 4 4
D35 5 5 4 5 7 5 5 5
D36 15 12 13 6 17 7 7 7
D37 4 9 5 8 5 7 7 7
D38 10 10 10 10 10 10 10 10
D45 7 8 7 8 9 8 8 8
D46 5 6 5 7 6 7 7 7
D47 10 9 10 10 11 11 11 11
D48 6 6 7 4 6 4 4 4
D56 17 14 14 11 16 9 9 9
D57 13 11 11 9 11 7 7 7
D58 13 12 10 8 13 7 7 7
D67 24 18 24 14 19 11 11 11
D68 25 17 22 11 25 11 11 11
D78 22 15 20 15 21 14 14 14

averages and maxima so that a factor model with more probability in the joint upper tail

might be an improvement over a factor model based on a discretized MVN.

The summary of findings for the preliminary analysis show that there is more proba-

bility in the upper tail compared with a discretized MVN, suggesting that a factor model

with bivariate Gumbel linking copulas might provide a better fit. Some representative re-

sults, for margin (3, 7), are presented in Table 5. Note that the bivariate Gumbel copula

failed to model the upper tail in some bivariate margins. This result might indicate that

a 2-factor model that combines Gumbel (more probability in the upper tail) with tν cop-

ulas, to add some additional dependence in both tails, might provide the better fit. Table

6 gives the estimated parameters, their standard errors (SE) in Kendall’s tau scale, joint

log-likelihoods ℓ, M2 statistics and corresponding p-values for the 1-factor and 2-factor

models.

For these results, in 1-factor models the weakest dependence can be found in the

copula CX15(·; θ5) linking the latent variable and the fifth item. The strongest dependence

can be found in the copula CX14(·; θ4) linking the latent variable and the fourth item.

The best fit for the 1-factor model is based on t2 linking copulas, where there is a big
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Table 5.

Diagnostics for Items 3 and 7 for the Science response data, based on the fit of the bivariate
normal, Gumbel, s.Gumbel, and t5 copulas, at each of the pair of items, comparing observed
versus model-based bivariate counts with an emphasis on the tails.

Y3 Y7 observed normal Gumbel s.Gumbel t5
0 0 4 3 3 5 5
0 1 8 11 11 11 11
0 2 12 15 15 13 12
0 3 9 3 4 4 5
1 0 6 7 7 6 6
1 1 34 29 30 29 31
1 2 47 47 48 47 47
1 3 11 15 13 16 14
2 0 8 9 10 8 7
2 1 52 50 50 49 49
2 2 111 104 106 106 111
2 3 35 43 40 44 40
3 0 3 1 1 2 3
3 1 6 10 9 11 10
3 2 23 28 24 28 24
3 3 23 17 21 14 19

improvement over the normal ogive model. However, it is revealed that one latent variable

is not adequate to model the dependencies among the items (Table 6, 1-factor model).

In 2-factor models, the best models in terms of the log-likelihood principle are provided

when we use Gumbel for one factor and tν (2 ≤ ν ≤ 3) copulas for the other factor. The

improvement over the bidimensional normal ogive model is substantial according to theM2

statistics presented in Table 6. Overall the (residual) dependence after a latent variable

for maxima is quite strong, as the overall dependence of the factor with tν copulas is

strong and varying in sign. The latent variable for maxima is positively associated with

all items, while the other latent variable is positively associated with Items 1,3,4,7 and

negatively associated with the remaining items. The combination of Gumbel and tν copulas

can handle negative (conditional) association, while this is not the case for a model with

Gumbel copulas for both factors. A 2-factor model with Gumbel linking copulas for both

factors was not a good fit because some parameters for Factor 2 tended to the independence

copula, which suggests some negative conditional dependence. Note here that the varimax

solution of the normal ogive model is closer to the 2-factor copula model with Gumbel for

Factor 2.

5.3. Environment item response data

This data set comes from the Environment section of the 1990 British Social Attitudes

Survey; see Rizopoulos (2011) and the references therein. All of the items were measured on

a three-group scale with response categories “0=very concerned”, “1=slightly concerned”

and “2=not very concerned”. A sample of 291 responded to the questions, Y1: Lead from

petrol; Y2: River and sea pollution; Y3: Transport and storage of radioactive waste; Y4:

Air pollution; Y5: Transport and disposal of poisonous chemicals; Y6: Nuclear Risks from

nuclear power station.

For all the items, it seems plausible that latent minima are involved. The items are

on a “reversed” ordinal scale; for an item, a respondent might be thinking about the
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Table 6.

Estimated parameters, their standard errors (SE) in Kendall’s tau scale, and joint log-likelihoods
ℓ, along with M2 statistics and corresponding p-values, for the discrete factor models built by
normal, Gumbel, s.Gumbel, and tν bivariate linking copulas for the Science item response data.

1-factor normal Gumbel s.Gumbel t2
Est. SE Est. SE Est. SE Est. SE

θ1 0.32 0.05 0.32 0.05 0.38 0.07 0.34 0.06
θ2 -0.01 0.05 0.07 0.04 0.01 0.03 0.07 0.06
θ3 0.37 0.04 0.37 0.04 0.30 0.06 0.34 0.06
θ4 0.59 0.07 0.60 0.08 0.43 0.07 0.52 0.07
θ5 -0.01 0.05 0.05 0.04 0.00 0.05 0.06 0.06
θ6 0.09 0.05 0.16 0.05 0.09 0.05 0.18 0.06
θ7 0.33 0.05 0.34 0.05 0.36 0.06 0.38 0.06

ℓ -3002.0 -2992.7 -3011.1 -2957.0
M2 540.4 500.2 580.7 401.7
df 182 182 182 182

p-value < 0.001 < 0.001 < 0.001 < 0.001

2-factor normal Gumbel/t2 t2/Gumbel t3/Gumbel
Est. Est. SE Est. SE Est. SE

θ1 0.32 0.27 0.05 0.22 0.07 0.24 0.06
θ2 -0.03 0.36 0.05 -0.18 0.07 -0.17 0.07
θ3 0.38 0.15 0.05 0.36 0.06 0.37 0.05
θ4 0.58 0.28 0.06 0.47 0.07 0.50 0.07
θ5 -0.03 0.36 0.06 -0.24 0.08 -0.22 0.08
θ6 0.09 0.44 0.05 -0.08 0.08 -0.06 0.07
θ7 0.34 0.21 0.05 0.32 0.06 0.32 0.06
δ1 0.13 0.20 0.07 0.24 0.06 0.24 0.06
δ2 0.46 -0.31 0.07 0.42 0.05 0.43 0.05
δ3 -0.09 0.36 0.06 0.13 0.07 0.11 0.07
δ4 -0.01 0.49 0.07 0.30 0.09 0.30 0.09
δ5 0.49 -0.37 0.07 0.47 0.06 0.48 0.06
δ6 0.44 -0.21 0.09 0.50 0.05 0.50 0.05
δ7 0.02 0.30 0.06 0.19 0.06 0.17 0.06

ℓ -2921.9 -2864.7 -2866.3 -2866.7
M2 296.8 169.9 169.9 175.0
df 176 175 175 175

p-value < 0.001 0.59 0.59 0.49

maximum concern of many past relevant events and then discretize the negative of the

latent maximum. Since each form of the pollution of the environment is very important,

the most harmful case of each form of the pollution in the environment might be reflected

on and then converted to an ordinal scale with the low category representing the most

concern. Hence, we expect that a factor copula model with survival Gumbel copulas might

be plausible, as the ordinal responses in this case are discretized minima.

The summary of findings for the preliminary analysis show that there is more joint

probability in the joint lower tail, suggesting that a factor model with bivariate s.Gumbel

linking copulas might provide a better fit. Some representative results, for margin (1, 5),

are presented in Table 7. Table 8 gives the estimated parameters, their standard errors

(SE) in Kendall’s tau scale, joint log-likelihoods ℓ,M2 statistics and corresponding p-values

for the 1-factor and 2-factor models.

The best fit for the 1-factor model is based on t8 linking copulas, where there is a

slight improvement over the normal ogive model. However, it is revealed that one latent

variable is not adequate to model the dependencies among the items (Table 8, 1-factor

model).
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Table 7.

Diagnostics for Items 1 and 5 of the Environment response data, based on the fit of the bivariate
normal, Gumbel, s.Gumbel, and t5 copulas at each of the pair of items, comparing observed
versus model-based bivariate counts with an emphasis on the tails.

Y1 Y5 observed normal Gumbel s.Gumbel t5
0 0 153 151 149 152 151
0 1 22 24 25 22 24
0 2 4 4 4 5 5
1 0 57 60 63 59 61
1 1 27 26 25 28 27
1 2 11 9 7 9 7
2 0 8 7 6 7 7
2 1 7 6 5 6 5
2 2 2 4 6 3 5

Table 8.

Estimated parameters (Est.), their standard errors (SE) in Kendall’s tau scale, and joint
log-likelihoods ℓ, along with M2 statistics and corresponding p-values, for the discrete factor
models built by normal, Gumbel, s.Gumbel, and tν for the Environment item response data.

1-factor normal Gumbel s.Gumbel t8
Est. SE Est. SE Est. SE Est. SE

θ1 0.42 0.04 0.36 0.04 0.47 0.05 0.42 0.05
θ2 0.58 0.05 0.49 0.05 0.65 0.05 0.58 0.05
θ3 0.67 0.04 0.60 0.05 0.74 0.04 0.67 0.05
θ4 0.67 0.04 0.62 0.05 0.72 0.04 0.68 0.05
θ5 0.66 0.04 0.58 0.05 0.73 0.04 0.66 0.04
θ6 0.52 0.04 0.47 0.04 0.55 0.04 0.52 0.04

ℓ -1093.3 -1098.4 -1092.8 -1092.7
M2 120.6 140.5 115.4 119.8
df 54 54 54 54

p-value < 0.001 < 0.001 < 0.001 < 0.001

2-factor normal s.Gum./s.Gum s.Gumbel/t4 s.Gumbel/t3
Est. Est. SE Est. SE Est. SE

θ1 0.45 0.54 0.06 0.51 0.08 0.51 0.08
θ2 0.57 0.70 0.06 0.66 0.11 0.65 0.12
θ3 0.24 0.52 0.17 0.25 0.15 0.22 0.16
θ4 0.58 0.82 0.16 0.59 0.12 0.57 0.13
θ5 0.26 0.52 0.15 0.30 0.14 0.28 0.15
θ6 0.18 0.38 0.15 0.21 0.12 0.19 0.13
δ1 0.21 0.00 0.24 0.21 0.14 0.22 0.14
δ2 0.41 0.18 0.29 0.48 0.17 0.51 0.16
δ3 0.73 0.72 0.13 0.77 0.10 0.78 0.10
δ4 0.58 0.33 0.50 0.60 0.12 0.61 0.11
δ5 0.64 0.64 0.12 0.63 0.07 0.64 0.07
δ6 0.55 0.52 0.11 0.53 0.07 0.52 0.07

ℓ -1072.3 -1068.0 -1069.3 -1069.4
M2 66.6 60.8 59.5 59.1
df 49 48 48 48

p-value 0.048 0.102 0.123 0.132

The best fitted 2-factor models result when we use s.Gumbel for Factor 1 and s.Gumbel

or t3 or t4 copulas for Factor 2 (s.Gumbel or s.Gumbel/t3 or s.Gumbel/t4). Note that, for

the conditional independence model with s.Gumbel copulas, some SEs are large and the

first parameter for the second factor is close to independence. Thus, we have also used

2d − 1 s.Gumbel copulas with the CX21 copula set to independence; but the results were

similar and, hence, are not reported. The improvement over the bidimensional normal
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ogive model is much smaller in this data set, but for the M2 statistics there is enough

improvement to change a P-value < 0.05 to one > 0.05 (Table 8, 2-factor model).

Interpreting the estimated parameters, the first latent variable is moderately positively

associated with all items and the second latent variable is moderately to highly positively

associated with almost all items. Similar interpretation comes from the varimax solution

of the normal ogive model.

6. Discussion

We have proposed factor or conditional independence models where we replace bivari-

ate normal distributions, between observed and latent variables, with bivariate copulas.

It is the most general factor model, with univariate parameters separated from depen-

dence parameters. Factor copula models use bivariate copulas linking observed variables

and unobserved factors or latent variables, rather than logistic or normal distributions

conditional on latent variables. Our factor copula construction includes the normal ogive

model as a special case and can provide a substantial improvement over the latter (normal

ogive model) based on log-likelihood and goodness-of-fit. This improvement relies on the

fact that when we use appropriate bivariate copulas other than normal copulas in the

construction, there is an interpretation of latent variables that can be maxima/minima or

high/low quantiles instead of means.

Building on the basic model proposed in this paper, there are several extensions that

can be implemented. The adoption of the special structure of the bifactor model (e.g.,

Gibbons and Hedeker, 1992) is straightforward. This has been implemented for the LOT

dataset but the fit was not improved. However, this special 3-factor dependence struc-

ture may prove useful in other applications. The discrete factor model can also easily be

extended to other types of discrete data and to inclusion of covariates. One can carry

out the model building process in two steps: (a) the selection of the univariate margins

as functions of some explanatory variables and, (b) the selection of the bivariate copulas

to build the factor copula model according to the actual dependence among the discrete

responses. The estimation via the IFM method is convenient for fitting the univariate

marginal distributions separately from fitting the factor model dependence structure.

Another direction of future research is to extend our factor model to capture the

residual dependence as in Braeken et al. (2007). Therein multivariate Archimedean copulas

have been used for subgroups of items that are chosen from the context. Without a priori

knowledge of the subgroups of items, a more general approach makes use of truncated

vine copula models, conditional on latent variables, to model the residual dependence with

O(d) dependence parameters for d items. Truncated vine models are studied in Brechmann

et al. (2012) for continuous response variables and in Panagiotelis et al. (2012) for discrete

response variables.
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Appendix A. Derivatives needed for the M2 statistic

We summarize the integral form of the derivatives needed for theM2 statistic in Tables

A.1 and A.2.

Table A.1.

Derivatives of the univariate probability πjy with respect to the cutpoint ajk, and of the bivariate
probability πj1j2,y1y2 with respect to the cutpoint ajk and the copula parameter θj for the
1-factor model for j, j1, j2 = 1, . . . , d, y, y1, y2 = 1, . . . ,K − 1, and k = 1, . . . ,K − 1. Note that
cX1j(x, a) = ∂2CX1j(x, a)/∂x∂a, Ċj|X1

(·; θj) = ∂Cj|X1
(·; θj)/∂θj , ḟj|X1

(y|x) = ∂fj|X1
(y|x)/∂θj =

Ċj|X1
(aj,y+1|x; θj)− Ċj|X1

(aj,y|x; θj).

∂πj1y/∂ajk If

1 ajk = aj1,y+1

−1 ajk = aj1,y

0 elsewhere

∂πj1j2,y1y2/∂ajk If

∫

1

0
cX1j1(x, aj1,y1+1; θj1)fj2|X1

(y2|x; θj2) dx ajk = aj1,y1+1

−
∫ 1

0
cX1j1(x, aj1,y1 ; θj1)fj2|X1

(y2|x; θj2) dx ajk = aj1,y1

∫

1

0
cX1j2(x, aj2,y2+1; θj2)fj1|X1

(y1|x; θj1) dx ajk = aj2,y2+1

−
∫ 1

0
cX1j2(x, aj2,y2 ; θj2)fj1|X1

(y1|x; θj1) dx ajk = aj2,y2

0 elsewhere

∂πj1j2,y1y2/∂θj If

∫ 1

0
ḟj1|X1

(y1|x; θj1)fj2|X1
(y2|x; θj2) dx j = j1

∫

1

0
ḟj2|X1

(y2|x; θj2)fj1|X1
(y1|x; θj1) dx j = j2

0 elsewhere

Appendix B. Numerical integration

For the log-likelihood and goodness-of-fit computations, Gauss-Legendre quadrature

(Stroud and Secrest, 1966) is used to evaluate one-dimensional integrals for all quantities

for the 1-factor model. For example,

πd(y) =

∫ 1

0

d∏

j=1

Pr(Yj = yj|X1 = x) dx ≈
nq∑

q=1

wq

d∏

j=1

Pr(Yj = yj|X1 = xq),

where {xq : q = 1, . . . , nq} are the quadrature points and {wq : q = 1, . . . , nq} are the

quadrature weights. To compute two-dimensional integrals for the 2-factor model, the

approximation uses Gauss-Legendre quadrature points in a double sum:

πd(y) =

∫ 1

0

∫ 1

0

d∏

j=1

Pr(Yj = yj|X1 = x1,X2 = x2) dx1dx2

≈
nq∑

q1=1

nq∑

q2=1

wq1wq2

d∏

j=1

Pr(Yj = yj|X1 = xq1 ,X2 = xq2).
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Table A.2.

Derivatives of the bivariate probability πj1j2,y1y2 with respect to the cutpoint ajk, the copula
parameter θj for the first latent variable and the copula parameter δj for the second latent
variable, for the 2-factor model for j, j1, j2 = 1, . . . , d, y, y1, y2 = 1, . . . ,K − 1, and
k = 1, . . . ,K − 1. Note that cX1j(x, a) = ∂2CX1j(x, a)/∂x∂a, cX2j(x, a) = ∂2CX2j(x, a)/∂x∂a,

ḟX2j|X1
(x2, y|x1) = ∂fX2j|X1

(x2, y|x1)/∂δj = Ċj|X2

[
Cj|X1

(aj,y+1|x1)|x2

]
− Ċj|X2

[
Cj|X1

(aj,y
|x1)|x2

]
, f̄X2j|X1

(x2, y|x1) = ∂fX2j|X1
/∂θj = cX2j

[
x2, Cj|X1

(aj,y+1|x1)
]
Ċj|X1

(aj,y+1|x1)−
cjX2

[
x2, Cj|X1

(aj,y|x1)
]
Ċj|X1

(aj,y|x1), Ċj|X1
(·; θj) = ∂Cj|X1

(·; θj)/∂θj , Ċj|X2
(·; δj) =

∂Cj|X2
(·; δj)/∂δj; the dependence of CX1j and CX2j on θj and δj , respectively, has been

suppressed to save space.

∂πj1j2,y1y2/∂ajk If

∫ 1

0

∫ 1

0
fX2j2|X1

(

x2, y2|x1

)

cX2j1

[

x2, Cj1|X1
(aj1,y1+1|x1)

]

cX1j1(x1, aj1,y1+1) dx1dx2 ajk = aj1,y1+1

−
∫

1

0

∫

1

0
fX2j2|X1

(

x2, y2|x1

)

cX2j1

[

x2, Cj1|X1
(aj1,y1 |x1)

]

cX1j1(x1, aj1,y1) dx1dx2 ajk = aj1,y1

∫ 1

0

∫ 1

0
fX2j1|X1

(

x2, y1|x1

)

cX2j2

[

x2, Cj2|X1
(aj2,y2+1|x1)

]

cX1j2(x1, aj2,y2+1) dx1dx2 ajk = aj2,y2+1

−
∫

1

0

∫

1

0
fX2j1|X1

(

x2, y1|x1

)

cX2j2

[

x2, Cj2|X1
(aj2,y2 |x1)

]

cX1j2(x1, aj2,y2) dx1dx2 ajk = aj2,y2

0 elsewhere

∂πj1j2,y1y2/∂θj If

∫

1

0

∫

1

0
fX2j2|X1

(

x2, y2|x1

)

f̄X2j2|X1

(

x2, y1|x1

)

dx1dx2 j = j1

∫ 1

0

∫ 1

0
fX2j1|X1

(

x2, y1|x1

)

f̄X2j1|X1

(

x2, y2|u1

)

dx1dx2 j = j2

0 elsewhere

∂πj1j2,y1y2/∂δj If

∫ 1

0

∫ 1

0
fX2j2|X1

(

x2, y2|x1

)

ḟX2j2|X1

(

x2, y1|x1

)

dx1dx2 j = j1

∫

1

0

∫

1

0
fX2j1|X1

(

x2, y1|x1

)

ḟX2j1|X1

(

x2, y2|x1

)

dx1dx2 j = j2

0 elsewhere

With Gauss-Legendre quadrature, the same nodes and weights are used for different func-

tions; this helps in yielding smooth numerical derivatives for numerical optimization via

quasi-Newton or Newton-Raphson iterations. To decide on nq, we have calculated several d-

dimensional probabilities for different copulas, where the integrals were approximated with

Gauss-Legendre quadrature and evaluated numerically with the R function integrate for

the 1-factor model or the R function adaptIntegrate in the R package cubature for the

2-factor model. Our comparisons show that nq = 15 is adequate with good precision to at

least at three decimal places.

Appendix C. Pseudo-code

Many of the steps in the algorithms can be vectorized if using programming languages

such as R or Fortran90. Assuming the number of quadrature points nq is larger than the

number of categories K per item, vectorization would be done over quadrature points.
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1-factor log-likelihood given parameter value θ

• Set the cutpoints on the uniform scale: a11, . . . , a1,K−1, . . . , ad1, . . . , ad,K−1. Also bound-

ary cutpoints 0 and 1 for each item.

• For each j, compute/store Cj|X1
(ajk|xq) for k = 1, . . . ,K − 1 and quadrature points xq

for q = 1, . . . , nq. Store values of 0 = Cj|X1
(0|xq) and 1 = Cj|X1

(1|xq) by appending,

resulting in an nq × (K + 1)× d array.

• For each j, compute the probability fj|X1
(k − 1|xq) = Cj|X1

(ajk|xq) − Cj|X1
(aj,k−1|xq)

for k = 1, . . . ,K and each quadrature point xq. Overall after this step, assume that

these densities are stored in an nq ×K × d array, say fden.

• Data loop: For yi (i = 1, . . . , N , sample size N),

fproduct← fden[, yi[1] + 1, 1] × · · · × fden[, yi[d] + 1, d].

Then to update the log-likelihood, use

loglikcontribution← log
{∑

(fproduct× weightvec)
}
,

where weightvec = (wq; q = 1, . . . , nq) is the vector of quadrature weights.

2-factor log-likelihood given parameter value θ

• Similarly as above to get an nq×(K−1)×d array fcond1 with sq1,k,j = Cj|X1
(ajk|xq1) =

Fj|X1
(k|xq1). Values on the boundary cutpoints are not needed.

• Compute/store tq1,q2,k,j = Cj|X2
(Cj|X1

(ajk|xq1)|xq2) = Cj|X2
(sq1,k,j|xq2) in an nq × nq ×

(K − 1)× d array. Store values of 0 = Cj|X2
(0|xq2) and 1 = Cj|X2

(1|xq2) by appending,

resulting in an nq × nq × (K + 1) × d array. Then compute tq1,q2,k,j − tq1,q2,k−1,j in an

appropriate vectorized operation to get an nq × nq ×K × d array, say fden2.

• Data loop: For yi (i = 1, . . . , N , sample size N),

fproduct← fden2[, , yi[1] + 1, 1] × · · · × fden2[, , yi[d] + 1, d]

(as a nq × nq matrix). Then,

loglikcontribution← log
{∑

(fproduct× weightmatrix)
}
,

where weightmatrix = (wq1wq2)1≤q1,q2≤nq
.

1-factor M2 statistic with
√
N -consistent θ̂

• With similar calculations as the ones for the likelihood evaluation:

– Get a 3-dimensional nq × (K + 1)× d array fcond with sq,k,j = Cj|X1
(ajk|xq).

– Get a 3-dimensional nq × (K + 1)× d array fdotcond with ṡq,k,j = Ċj|X1
(ajk|xq).

– Get a 3-dimensional nq × (K − 1)× d array cdens with cq,k,j = cX1j(xq, ajk). Values

on the boundary cutpoints are not needed.

• Compute/store sq,k,j − sq,k−1,j to get an nq × nq ×K × d array, say fden.

• Compute/store ṡq,k,j − ṡq,k−1,j to get an nq × nq ×K × d array, say fdotden.

• The matrices ∆2,∆
(c)
2 ,Ξ2 can be computed in a straightforward way from the above

arrays.
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2-factor model M2 statistic with
√
N -consistent θ̂

• Similarly as above to get:

– a 3-dimensional nq × (K − 1)× d array fcond1 with sq1,k,j = Cj|X1
(ajk|xq1).

– a 3-dimensional nq × (K − 1)× d array fdotcond1 with ṡq1,k,j = Ċj|X1
(ajk|xq1).

– a 3-dimensional nq × (K − 1)× d array cdens1 with cq1,k,j = cX1j(xq1 , ajk).

• For each j, for k = 1, . . . ,K and each quadrature point xq1 compute/store:

– tq1,q2,k,j = Cj|X2
(Cj|X1

(ajk|xq1)|xq2) = Cj|X2
(sq1,k,j|xq2) to get an nq×nq×(K−1)×d

array. Store values of 0 = Cj|X2
(0|xq2) and 1 = Cj|X2

(1|xq2) by appending to get an

nq × nq × (K + 1)× d array, say fcond2.

– ṫq1,q2,k,j = Ċj|X2
(Cj|X1

(ajk|xq1)|xq2) = Ċj|X2
(sq1,k,j|xq2) to get an nq×nq×(K−1)×d

array. Store values of 0 = Ċj|X2
(0|xq2) and 0 = Ċj|X2

(1|xq2) by appending to get an

nq × nq × (K + 1)× d array, say fdotcond2

– zq1,q2,k,j = cX2j(xq2 , Cj|X1
(ajk|xq1)) = cX2j(xq2 , sq1,k,j) to get an nq×nq× (K− 1)× d

array, say cdens2.

– zq1,q2,k,j × cq1,k,j to get an nq × nq × (K − 1)× d array, say cdens12.

– bq1,q2,k,j = zq1,q2,k,j × ṡq1,k,j to get an nq × nq × (K − 1) × d array. Store values of

0 = cX2j(xq2 , 0)Ċj|X2
(0|xq2) and 0 = cX2j(xq2 , 1)Ċj|X2

(1|xq2) by appending to get an

nq × nq × (K + 1)× d array, say cbar.

• Then compute/store

– tq1,q2,k,j − tq1,q2,k−1,j to get an nq × nq ×K × d array, say fden2.

– ṫq1,q2,k,j − ṫq1,q2,k−1,j to get an nq × nq ×K × d array, say fdotden2.

– bq1,q2,k,j − bq1,q2,k−1,j to get an nq × nq ×K × d array, say fbarden.

• The matrices ∆2,∆
(c)
2 ,Ξ2 can be computed from the above arrays.
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