13 research outputs found

    Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide

    No full text
    Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in lownutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non-nitrogenfixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species

    Rapid recovery of the beetle richness-elevation relationship and its environmental correlates after a major volcanic event in northwestern Patagonia, Argentina

    No full text
    Volcanic eruptions often modify the structure and function of ecosystems at large geographical scales. However, the extent to which species diversity patterns respond to these major natural disturbances is still poorly known. We tested the shape of the species richness – elevation relationship (SRER) and its environmental correlates (thermal environment at ground level, vegetation structure and soil attributes) before and 6 months after (in the first summer) the most recent eruption of the Puyehue Cordon Caulle volcanic complex (PCCVC), which caused an extensive ash accumulation in northwestern Patagonia, Argentina. We re-established 32, 100-m2 sampling plots of nine pitfall traps, placed every 100 m of altitude from the base to the summit of three mountains differentially affected by ash deposition, and from which we had pre-eruption data on richness and environmental variables. Coverage-based rarefaction/extrapolation curves showed a local post-eruptive decrease in richness on only one mountain. Generalised additive models (GAMs) showed no significant differences between pre- and post-eruptive SRER shapes. Partial least squares structural equation modelling (PLS-SEM) showed that woody vegetation and the thermal environment accounted for most of the variation in richness before and after the eruption. Soil attributes were only indirectly associated with beetle richness and the association was mediated by woody vegetation. Ash accumulation ameliorated the thermal environment, promoting a local increase in beetle richness. The rapid recovery of the SRER shape and its environmental correlates suggest that the structuring of local diversity patterns at temperate latitudes of the southern hemisphere is resilient to major volcanic eruptions.Fil: Baudino, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Ecotono; ArgentinaFil: Werenkraut, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Ecotono; ArgentinaFil: Ruggiero, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Ecotono; Argentin

    Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide

    No full text
    Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in lownutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non-nitrogenfixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species

    Litter microbial and soil faunal communities stimulated in the wake of a volcanic eruption in a semi-arid woodland in Patagonia, Argentina

    No full text
    Large-scale disturbances can be important components of the temporal landscape of natural ecosystems, but generalities regarding ecosystem impacts are difficult due to their infrequent and unpredictable nature. Volcanic eruptions figure as one of the most prominent of these natural disturbances, but the effects on microbes and ground-dwelling arthropods, which modulate carbon and nutrient turnover, are relatively unknown. We evaluated the effects of the 2011 Puyehue-Cordón Caulle eruption in Patagonia, Argentina, on the litter and soil microbial and faunal communities in natural and afforested semi-arid ecosystems located 70 km west of the epicentre of the eruption. We hypothesized that volcanic ash deposition would strongly reduce soil faunal and microbial communities due to insecticidal effects of ash on arthropods, with a concomitant reduction in ecosystem processes. Our objective was to quantify the impact of the volcanic eruption by comparing pre- and post-eruption time points in the same study site, with nearly identical field methodology. We measured environmental variables of soil and litter moisture, pH, microbial biomass, and soil and litter microbial enzymatic activity. We evaluated ground-dwelling arthropods and nematodes using pitfall traps and soil extraction, respectively. Additionally, a parallel, controlled-condition experiment of simulated ash deposition was conducted to evaluate ash effects on litter decomposition and enzymatic activity. In the field, post-eruption soils had lower soil water content, pH and soil organic matter. Additionally, nematode abundance and soil microbial enzyme activity were significantly reduced. In contrast, ground-dwelling arthropods and litter enzymatic activity increased significantly. Finally, with simulated ash deposition, litter decomposition increased fourfold for native litter decomposition. Large-scale disturbances may play a key role in biogeochemical cycling in affected natural ecosystems, but not necessarily due to their catastrophic effects. In contrast to our original predictions, we observed a marked stimulation of biotic activity and carbon turnover in the aftermath of the Puyehue volcanic eruption, which demonstrates that the biotic component of these ecosystems has a substantial capacity to respond to these disturbances in short time frames. These results can contribute to placing the role of these large-scale infrequent disturbances in a more robust ecological context. A Lay Summary is available for this article.Fil: Berenstecher, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Gangi, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: González Arzac, Adelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Martínez, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Chaves, Eliseo Jorge. Laboratorio de Análisis de Nematodos En Suelo y Plantas; Argentina. Sistema Nacional Argentino de Vigilancia y Monitoreo de Plagas. Laboratorio de Análisis de Nematodos en Suelo y Plantas; ArgentinaFil: Mondino, Eduardo A.. Universidade Federal do Rio de Janeiro; BrasilFil: Austin, Amy Theresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; Argentin

    Plant quality and primary productivity modulate plant biomass responses to the joint effects of grazing and fertilization in a mesic grassland

    No full text
    Questions: Human activities are increasing the density of domestic grazers and global nutrient loads, modifying the main determinants of vegetation community dynamics. Grazing (top-down control) and nutrient availability (bottom-up control) may interactively modify plant biomass, which is particularly important in grasslands devoted to livestock production. Here, we aim to understand the interactive effects of grazing and fertilization on grassland plant biomass. We hypothesized that the joint effects of nutrient addition and domestic grazing on above-ground plant biomass are not additive, but they modify each other through changes in ground-level light, leaf nutritional quality, above-ground net primary productivity (ANPP), and below-ground plant allocation. Location: Flooding Pampa (Buenos Aires, Argentina). Methods: We carried out a factorial experiment of grazing exclusion and fertilization with nitrogen, phosphorus, and potassium + micronutrients during ​several years in a mesic grassland devoted to livestock production. Results: After four years, grazing reduced live above-ground plant biomass by 52%, and when combined with fertilization this reduction was 70%. Nutrient addition in the grazed grassland increased ANPP and leaf nutrient concentration. These changes in turn intensified grazing pressure and cattle’s plant consumption. By contrast, fertilization did not produce any significant effect on plant biomass or ANPP inside the exclosures, where ground-level light was low. A structural equation model revealed that the increase in ANPP fostered above-ground and reduced below-ground plant biomass. Conclusions: This is the first study conducted in the Pampas grasslands that evaluated the effect of cattle grazing and fertilization on plant communities under field conditions over several years. Grazing and nutrient addition synergistically controlled grassland plant biomass, as the reduction in above-ground biomass by cattle consumption was greater in fertilized plots. Our results provided empirical evidence that leaf nitrogen and ANPP modulated plant biomass dynamics in grasslands devoted to livestock production in the context of increased nutrient loads in terrestrial ecosystems.Fil: Campana, María Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Yahdjian, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentin
    corecore