16 research outputs found

    Localization of ferrochelatase in Plasmodium falciparum

    Get PDF
    Our previous studies have demonstrated de novo haem biosynthesis in the malarial parasite (Plasmodium falciparum and P. berghei). It has also been shown that the first enzyme of the pathway is the parasite genome-coded ALA (δ\delta-aminolaevulinate) synthase localized in the parasite mitochondrion, whereas the second enzyme, ALAD (ALA dehydratase), is accounted for by two species: one species imported from the host red blood cell into the parasite cytosol and another parasite genome-coded species in the apicoplast. In the present study, specific antibodies have been raised to PfFC (parasite genome-coded ferrochelatase), the terminal enzyme of the haem-biosynthetic pathway, using recombinant truncated protein. With the use of these antibodies as well as those against the hFC (host red cell ferrochelatase) and other marker proteins, immunofluorescence studies were performed. The results reveal that P. falciparum in culture manifests a broad distribution of hFC and a localized distribution of PfFC in the parasite. However, PfFC is not localized to the parasite mitochondrion. Immunoelectron-microscopy studies reveal that PfFC is indeed localized to the apicoplast, whereas hFC is distributed in the parasite cytoplasm. These results on the localization of PfFC are unexpected and are at variance with theoretical predictions based on leader sequence analysis. Biochemical studies using the parasite cytosolic and organellar fractions reveal that the cytosol containing hFC accounts for 80% of FC enzymic activity, whereas the organellar fraction containing PfFC accounts for the remaining 20%. Interestingly, both the isolated cytosolic and organellar fractions are capable of independent haem synthesis in vitro from [4-^1^4C]ALA, with the cytosol being three times more efficient compared with the organellar fraction. With [2-^1^4C]glycine, most of the haem is synthesized in the organellar fraction. Thus haem is synthesized in two independent compartments: in the cytosol, using the imported host enzymes, and in the organellar fractions, using the parasite genome-coded enzymes

    Localization of ferrochelatase in Plasmodium falciparum

    No full text
    Our previous studies have demonstrated de novo haem biosynthesis in the malarial parasite (Plasmodium falciparum and P. berghei). It has also been shown that the first enzyme of the pathway is the parasite genome-coded ALA (δ-aminolaevulinate) synthase localized in the parasite mitochondrion, whereas the second enzyme, ALAD (ALA dehydratase), is accounted for by two species: one species imported from the host red blood cell into the parasite cytosol and another parasite genome-coded species in the apicoplast. In the present study, specific antibodies have been raised to PfFC (parasite genome-coded ferrochelatase), the terminal enzyme of the haem-biosynthetic pathway, using recombinant truncated protein. With the use of these antibodies as well as those against the hFC (host red cell ferrochelatase) and other marker proteins, immunofluorescence studies were performed. The results reveal that P. falciparum in culture manifests a broad distribution of hFC and a localized distribution of PfFC in the parasite. However, PfFC is not localized to the parasite mitochondrion. Immunoelectron-microscopy studies reveal that PfFC is indeed localized to the apicoplast, whereas hFC is distributed in the parasite cytoplasm. These results on the localization of PfFC are unexpected and are at variance with theoretical predictions based on leader sequence analysis. Biochemical studies using the parasite cytosolic and organellar fractions reveal that the cytosol containing hFC accounts for 80% of FC enzymic activity, whereas the organellar fraction containing PfFC accounts for the remaining 20%. Interestingly, both the isolated cytosolic and organellar fractions are capable of independent haem synthesis in vitro from [4-(14)C]ALA, with the cytosol being three times more efficient compared with the organellar fraction. With [2-(14)C]glycine, most of the haem is synthesized in the organellar fraction. Thus haem is synthesized in two independent compartments: in the cytosol, using the imported host enzymes, and in the organellar fractions, using the parasite genome-coded enzymes

    A nanoformulation of siRNA and its role in cancer therapy: In vitro and in vivo evaluation

    No full text
    AbstractOverexpression of anti-apoptotic Bcl-2 is often observed in a wide variety of human cancers. It prevents the induction of apoptosis in neoplastic cells and contributes to resistance to chemotherapy. RNA interference has emerged as an efficient and selective technique for gene silencing. The potential to use small interfering RNA (siRNA) as a therapeutic agent for the treatment of cancer has elicited a great deal of interest. However, insufficient cellular uptake and poor stability have limited its therapeutic applications. The purpose of this study was to prepare chitosan nanoparticles via ionic gelation of chitosan by tripolyphosphate for effective delivery of siRNA to silence the anti-apoptotic Bcl-2 gene in neoplastic cells. Chitosan nanoparticles loaded with siRNA were in the size range 190 to 340 nm with a polydispersive index ranging from 0.04 to 0.2. They were able to completely bind with siRNA, provide protection against nuclease degradation, and enhance the transfection. Cell culture studies revealed that nanoparticles with entrapped siRNA could efficiently silence the antiapoptotic Bcl-2 gene. Studies on Swiss albino mice showed that siRNA could be effectively delivered through nanoparticles. There was significant decrease in the tumor volume. Blocking the expression of anti-apoptotic Bcl-2 can enhance the sensitivity of cancerous cells to anti-cancer drugs and the apoptosis rate. Therefore, nanoformulations with siRNA can be promoted as an adjuvant therapy in combination with anti-cancer drugs.</jats:p

    Fabry&#x2032;s disease: An ultrastructural study of nerve biopsy

    No full text
    Fabry&#x2032;s disease, an X linked recessive disorder caused by the deficiency of a-galactosidase A (a-gal A), leads to progressive accumulation of glycosphingolipids. We report this rare disease in a 19-year-old boy who presented with angiokeratomas, paresthesia and corneal opacities, and nerve biopsy revealed by electron microscopy lamellated inclusions in the smooth muscle, perineurial and endothelial cells characteristic of Fabry&#x2032;s disease
    corecore