9,402 research outputs found

    The stochastic dynamics of nanoscale mechanical oscillators immersed in a viscous fluid

    Get PDF
    The stochastic response of nanoscale oscillators of arbitrary geometry immersed in a viscous fluid is studied. Using the fluctuation-dissipation theorem it is shown that deterministic calculations of the governing fluid and solid equations can be used in a straightforward manner to directly calculate the stochastic response that would be measured in experiment. We use this approach to investigate the fluid coupled motion of single and multiple cantilevers with experimentally motivated geometries.Comment: 5 pages, 5 figure

    Fluctuation-dissipation ratios in the dynamics of self-assembly

    Full text link
    We consider two seemingly very different self-assembly processes: formation of viral capsids, and crystallization of sticky discs. At low temperatures, assembly is ineffective, since there are many metastable disordered states, which are a source of kinetic frustration. We use fluctuation-dissipation ratios to extract information about the degree of this frustration. We show that our analysis is a useful indicator of the long term fate of the system, based on the early stages of assembly.Comment: 8 pages, 6 figure

    Finite-temperature critical point of a glass transition

    Full text link
    We generalize the simplest kinetically constrained model of a glass-forming liquid by softening kinetic constraints, allowing them to be violated with a small finite rate. We demonstrate that this model supports a first-order dynamical (space-time) phase transition, similar to those observed with hard constraints. In addition, we find that the first-order phase boundary in this softened model ends in a finite-temperature dynamical critical point, which we expect to be present in natural systems. We discuss links between this critical point and quantum phase transitions, showing that dynamical phase transitions in dd dimensions map to quantum transitions in the same dimension, and hence to classical thermodynamic phase transitions in d+1d+1 dimensions. We make these links explicit through exact mappings between master operators, transfer matrices, and Hamiltonians for quantum spin chains.Comment: 10 pages, 5 figure

    First Results from a 1.3 cm EVLA Survey of Massive Protostellar Objects: G35.03+0.35

    Full text link
    We have performed a 1.3 centimeter survey of 24 massive young stellar objects (MYSOs) using the Expanded Very Large Array (EVLA). The sources in the sample exhibit a broad range of massive star formation signposts including Infrared Dark Clouds (IRDCs), UCHII regions, and extended 4.5 micron emission in the form of Extended Green Objects (EGOs). In this work, we present results for G35.03+0.35 which exhibits all of these phenomena. We simultaneously image the 1.3 cm ammonia (1,1) through (6,6) inversion lines, four methanol transitions, two H recombination lines, plus continuum at 0.05 pc resolution. We find three areas of thermal ammonia emission, two within the EGO (designated the NE and SW cores) and one toward an adjacent IRDC. The NE core contains an UCHII region (CM1) and a candidate HCHII region (CM2). A region of non-thermal, likely masing ammonia (3,3) and (6,6) emission is coincident with an arc of 44 GHz methanol masers. We also detect two new 25 GHz Class I methanol masers. A complementary Submillimeter Array 1.3 mm continuum image shows that the distribution of dust emission is similar to the lower-lying ammonia lines, all peaking to the NW of CM2, indicating the likely presence of an additional MYSO in this protocluster. By modeling the ammonia and 1.3 mm continuum data, we obtain gas temperatures of 20-220 K and masses of 20-130 solar. The diversity of continuum emission properties and gas temperatures suggest that objects in a range of evolutionary states exist concurrently in this protocluster.Comment: To appear in Astrophysical Journal Letters Special Issue on the EVLA. 16 pages, 3 figures. Includes the complete version of Figure 3, which was unable to fit into the journal article due to the number of panel

    The Protocluster G18.67+0.03: A Test Case for Class I Methanol Masers as Evolutionary Indicators for Massive Star Formation

    Full text link
    We present high angular resolution Submillimeter Array (SMA) and Karl G. Jansky Very Large Array (VLA) observations of the massive protocluster G18.67+0.03. Previously targeted in maser surveys of GLIMPSE Extended Green Objects (EGOs), this cluster contains three Class I methanol maser sources, providing a unique opportunity to test the proposed role of Class I masers as evolutionary indicators for massive star formation. The millimeter observations reveal bipolar molecular outflows, traced by 13CO(2-1) emission, associated with all three Class I maser sources. Two of these sources (including the EGO) are also associated with 6.7 GHz Class II methanol masers; the Class II masers are coincident with millimeter continuum cores that exhibit hot core line emission and drive active outflows, as indicated by the detection of SiO(5-4). In these cases, the Class I masers are coincident with outflow lobes, and appear as clear cases of excitation by active outflows. In contrast, the third Class I source is associated with an ultracompact HII region, and not with Class II masers. The lack of SiO emission suggests the 13CO outflow is a relic, consistent with its longer dynamical timescale. Our data show that massive young stellar objects associated only with Class I masers are not necessarily young, and provide the first unambiguous evidence that Class I masers may be excited by both young (hot core) and older (UC HII) MYSOs within the same protocluster.Comment: Astrophysical Journal Letters, accepted. emulateapj, 7 pages including 4 figures and 1 table. Figures compressed. v2: coauthor affiliation updated, emulateapj versio

    The application of the global isomorphism to the surface tension of the liquid-vapor interface of the Lennard-Jones fluids

    Full text link
    In this communication we show that the surface tension of the real fluids of the Lennard-Jones type can be obtained from the surface tension of the lattice gas (Ising model) on the basis of the global isomorphism approach developed earlier for the bulk properties.Comment: 8 pages, 6 figure

    Origin of entropy convergence in hydrophobic hydration and protein folding

    Get PDF
    An information theory model is used to construct a molecular explanation why hydrophobic solvation entropies measured in calorimetry of protein unfolding converge at a common temperature. The entropy convergence follows from the weak temperature dependence of occupancy fluctuations for molecular-scale volumes in water. The macroscopic expression of the contrasting entropic behavior between water and common organic solvents is the relative temperature insensitivity of the water isothermal compressibility. The information theory model provides a quantitative description of small molecule hydration and predicts a negative entropy at convergence. Interpretations of entropic contributions to protein folding should account for this result.Comment: Phys. Rev. Letts. (in press 1996), 3 pages, 3 figure

    Gene Expression Signature in Adipose Tissue of Acromegaly Patients.

    Get PDF
    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly

    The role of sonographic phenotyping in delivering an efficient non-invasive prenatal diagnosis (NIPD) service for FGFR3-related skeletal dysplasias

    Get PDF
    Objectives: To evaluate the diagnostic yield of noninvasive prenatal diagnosis (NIPD) for FGFR3‐related skeletal dysplasias and assess the accuracy of referrals based on sonographic findings to inform guidelines for referral. Methods: We retrospectively reviewed laboratory and referral records from 2012 to 2018 to ascertain all NIPD tests performed using our next generation sequencing panel to detect FGFR3 mutations. We calculated the diagnostic yield of the test overall and when sub‐divided according to the phenotypic features identified on ultrasound before testing. Pregnancy outcomes were ascertained wherever possible from referring centers. Results: Of 335 tests, 261 were referred because of sonographic findings, of which 80 (31.3%) had a mutation. The diagnostic yield when short limbs were the only abnormal sonographic feature reported was 17.9% (30/168), increasing to 48.9% (23/47) in the presence of one, and 82.6% (19/23) in the presence of two or more characteristic features in addition to short limbs. Conclusions: Accurate sonographic phenotyping can maximise the diagnostic yield of NIPD in fetuses suspected to have FGFR3‐related skeletal dysplasias. We suggest that clear guidelines for referral are necessary to increase benefits, decrease costs by preventing unnecessary NIPD, and potentially allow first‐line broader spectrum testing for fetuses where the aetiology may be more heterogeneous

    Anisotropic spatially heterogeneous dynamics in a model glass-forming binary mixture

    Full text link
    We calculated a four-point correlation function G_4(k,r;t) and the corresponding structure factor S_4(k,q;t) for a model glass-forming binary mixture. These functions measure the spatial correlations of the relaxation of different particles. We found that these four-point functions are anisotropic and depend on the angle between vectors k and r (or q). The anisotropy is the strongest for times somewhat longer than the beta relaxation time but it is quite pronounced even for times comparable to the alpha relaxation time, tau_alpha. At the lowest temperatures S_4(k,q;tau_alpha) is strongly anisotropic even for the smallest wavevector q accessible in our simulation
    • 

    corecore