252 research outputs found
Measuring glacier surface roughness using plot-scale, close-range digital photogrammetry
Glacier roughness at sub-metre scales is an important control on the ice surface energy balance and has implications for scattering energy measured by remote-sensing instruments. Ice surface roughness is dynamic as a consequence of spatial and temporal variation in ablation. To date, studies relying on singular and/or spatially discrete two-dimensional profiles to describe ice surface roughness have failed to resolve common patterns or causes of variation in glacier surface morphology. Here we demonstrate the potential of close-range digital photogrammetry as a rapid and cost-effective method to retrieve three-dimensional data detailing plot-scale supraglacial topography. The photogrammetric approach here employed a calibrated, consumer-grade 5 Mpix digital camera repeatedly imaging a plot-scale (≤25 m2) ice surface area on Midtre Lovénbreen, Svalbard. From stereo-pair images, digital surface models (DSMs) with sub-centimetre horizontal resolution and 3 mm vertical precision were achieved at plot scales ≤4 m2. Extraction of roughness metrics including estimates of aerodynamic roughness length (z 0) was readily achievable, and temporal variations in the glacier surface topography were captured. Close-range photogrammetry, with appropriate camera calibration and image acquisition geometry, is shown to be a robust method to record sub-centimetre variations in ablating ice topography. While the DSM plot area may be limited through use of stereo-pair images and issues of obliquity, emerging photogrammetric packages are likely to overcome such limitations
Unfolding Rates for the Diffusion-Collision Model
In the diffusion-collision model, the unfolding rates are given by the
likelihood of secondary structural cluster dissociation. In this work, we
introduce an unfolding rate calculation for proteins whose secondary structural
elements are -helices, modeled from thermal escape over a barrier which
arises from the free energy in buried hydrophobic residues. Our results are in
good agreement with currently accepted values for the attempt rate.Comment: Shorter version of cond-mat/0011024 accepted for publication in PR
Wavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar screens
We study the classical first-kind boundary integral equation reformulations
of time-harmonic acoustic scattering by planar sound-soft (Dirichlet) and
sound-hard (Neumann) screens. We prove continuity and coercivity of the
relevant boundary integral operators (the acoustic single-layer and
hypersingular operators respectively) in appropriate fractional Sobolev spaces,
with wavenumber-explicit bounds on the continuity and coercivity constants. Our
analysis is based on spectral representations for the boundary integral
operators, and builds on results of Ha-Duong (Jpn J Ind Appl Math 7:489--513
(1990) and Integr Equat Oper Th 15:427--453 (1992)).Comment: v2 has minor corrections compared to v1. arXiv admin note:
substantial text overlap with arXiv:1401.280
A terminal assessment of stages theory : introducing a dynamic states approach to entrepreneurship
Stages of Growth models were the most frequent theoretical approach to understanding entrepreneurial business growth from 1962 to 2006; they built on the growth imperative and developmental models of that time. An analysis of the universe of such models (N=104) published in the management literature shows no consensus on basic constructs of the approach, nor is there any empirical confirmations of stages theory. However, by changing two propositions of the stages models, a new dynamic states approach is derived. The dynamic states approach has far greater explanatory power than its precursor, and is compatible with leading edge research in entrepreneurship
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
- …