44 research outputs found

    Securing Smart Sensing Production System using Deep Neural Network Model

    Get PDF
    Internet of Things (IoT) enabled cyber physical systems such as Industrial equipment’s and operational IT to send and receive data over internet. This equipment’s will have sensors to sense equipment condition and report to centralized server using internet connection. Sometime some malicious users may attack or hack such sensors and then alter their data and this false data will be report to centralized server and false action will be taken. Due to false data many countries equipment and production system got failed and many algorithms was developed to detect attack, but all these algorithms suffer from data imbalance (one class my contains huge records (for example NORMAL records and other class like attack may contains few records which lead to imbalance problem and detection algorithms may failed to predict accurately). To deal with data imbalance, existing algorithms were using OVER and UNDER sampling which will generate new records for FEWER class only. To overcome from this issue, we are introducing novel technique without using any under or oversampling algorithms. The proposed technique consists of 2 parts which includes auto encoder and deep neural networks (DNNs)

    Securing Smart Sensing Production System using Deep Neural Network Model

    Get PDF
    Internet of Things (IoT) enabled cyber physical systems such as Industrial equipment’s and operational IT to send and receive data over internet. This equipment’s will have sensors to sense equipment condition and report to centralized server using internet connection. Sometime some malicious users may attack or hack such sensors and then alter their data and this false data will be report to centralized server and false action will be taken. Due to false data many countries equipment and production system got failed and many algorithms was developed to detect attack, but all these algorithms suffer from data imbalance (one class my contains huge records (for example NORMAL records and other class like attack may contains few records which lead to imbalance problem and detection algorithms may failed to predict accurately). To deal with data imbalance, existing algorithms were using OVER and UNDER sampling which will generate new records for FEWER class only. To overcome from this issue, we are introducing novel technique without using any under or oversampling algorithms. The proposed technique consists of 2 parts which includes auto encoder and deep neural networks (DNNs)

    Fissidens linearis (Fissidentaceae: Bryophyta) a new record for India

    Get PDF
    Abstract Fissidens linearis var. obscurirete, is reported as a new record of occurrence to India from the Western Ghats of Kerala

    The genus Drepanolejeunea (Spruce) Schiffn. (Lejeuneaceae; Marchantiophyta) in the Western Ghats with special reference to Kerala

    Get PDF
    Diversity of the genus Drepanolejeunea (Spruce) Schiffn. of the family Lejeuneaceae in Kerala is discussed in detail. So far, 8 species have been reported from the Western Ghats, of which 6 occur in Kerala. This paper provides detailed descriptions of 5 of the species collected from Kerala during the present survey. Among these, Drepanolejeunea erecta (Steph.) Mizut. is new to the Western Ghats, D. fleischeri (Steph.) Grolle & Zhu, D. pentadactyla (Mont.) Steph. and D. ternatensis (Gottsche) Steph. are new records for Kerala

    Cololejeunea manilalia (Lejeuneaceae, Marchantiophyta), a new species from the Western Ghats of India

    Get PDF
    Cololejeunea manilalia sp. nov., an epiphyllous leafy liverwort, collected from the high altitude, tropical wet evergreen shola (cloud forest) of the New Amarambalam Reserved Forest in the Western Ghats of India is described and illustrated

    Bryophyte diversity in the Sacred Groves, with special reference to Vallikkattukavu of Kozhikode district in Western Ghats

    Get PDF
    The bryophyte diversity in the Vallikkattu kavu of Kozhikode district is enumerated along with the conservation of bryophytes in the sacred grove is discussed. This report represents many interesting finds such as Bryum retusifolium  var. heterophyllum Card. ex Gangulee a new record to Kerala and Ditrichum tortuloides Grout. is a new record for Peninsular India. The endemic species Fissidens kammadensis Manju et al. and the rare species Calymperes palisotti  Schwaegr. could be collected from this sacred grove

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults

    Get PDF
    Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference) and obesity (BMI >2 SD above the median). Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining underweight or thinness. Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesit
    corecore