18 research outputs found

    Hyperactive ryanodine receptors in human heart failure and ischaemic cardiomyopathy reside outside of couplons

    Get PDF
    Aims In ventricular myocytes from humans and large mammals, the transverse and axial tubular system (TATS) network is less extensive than in rodents with consequently a greater proportion of ryanodine receptors (RyRs) not coupled to this membrane system. TATS remodelling in heart failure (HF) and after myocardial infarction (MI) increases the fraction of non-coupled RyRs. Here we investigate whether this remodelling alters the activity of coupled and non-coupled RyR sub-populations through changes in local signalling. We study myocytes from patients with end-stage HF, compared with non-failing (non-HF), and myocytes from pigs with MI and reduced left ventricular (LV) function, compared with sham intervention (SHAM).Methods and resultsSingle LV myocytes for functional studies were isolated according to standard protocols. Immunofluorescent staining visualized organization of TATS and RyRs. Ca2+ was measured by confocal imaging (fluo-4 as indicator) and using whole-cell patch-clamp (37°C). Spontaneous Ca2+ release events, Ca2+ sparks, as a readout for RyR activity were recorded during a 15 s period following conditioning stimulation at 2 Hz. Sparks were assigned to cell regions categorized as coupled or non-coupled sites according to a previously developed method. Human HF myocytes had more non-coupled sites and these had more spontaneous activity than in non-HF. Hyperactivity of these non-coupled RyRs was reduced by Ca2+/calmodulin-dependent kinase II (CaMKII) inhibition. Myocytes from MI pigs had similar changes compared with SHAM controls as seen in human HF myocytes. As well as by CaMKII inhibition, in MI, the increased activity of non-coupled sites was inhibited by mitochondrial reactive oxygen species (mito-ROS) scavenging. Under adrenergic stimulation, Ca2+ waves were more frequent and originated at non-coupled sites, generating larger Na+/Ca2+ exchange currents in MI than in SHAM. Inhibition of CaMKII or mito-ROS scavenging reduced spontaneous Ca2+ waves, and improved excitation–contraction coupling.ConclusionsIn HF and after MI, RyR microdomain re-organization enhances spontaneous Ca2+ release at non-coupled sites in a manner dependent on CaMKII activation and mito-ROS production. This specific modulation generates a substrate for arrhythmia that appears to be responsive to selective pharmacologic modulation

    Altered adrenergic response in myocytes bordering a chronic myocardial infarction underlies <i>in vivo</i> triggered activity and repolarization instability

    Get PDF
    Ventricular arrhythmias are a major complication early after myocardial infarction (MI). The heterogeneous peri‐infarct zone forms a substrate for re‐entry while arrhythmia initiation is often associated with sympathetic activation. We studied the mechanisms triggering these post‐MI arrhythmias in vivo and their relation to regional myocyte remodelling. In pigs with chronic MI (6 weeks), in vivo monophasic action potentials were simultaneously recorded in the peri‐infarct and remote regions during adrenergic stimulation with isoproterenol (ISO). Sham animals served as controls. During infusion of ISO in vivo, the incidence of delayed afterdepolarizations (DADs) and beat‐to‐beat variability of repolarization (BVR) was higher in the peri‐infarct than in the remote region. Myocytes isolated from the peri‐infarct region, in comparison to myocytes from the remote region, had more DADs, associated with spontaneous Ca2+ release, and a higher incidence of spontaneous action potentials when exposed to ISO (9.99 ± 4.2 vs. 0.16 ± 0.05 APs/min, p = 0.004); these were suppressed by CaMKII inhibition. Peri‐infarct myocytes also had reduced repolarization reserve and increased BVR (26 ± 10 ms vs. 9 ± 7 ms, p 2+ handling at baseline and myocyte hypertrophy were present throughout the LV. Expression of some of the related genes was however different between the regions. In conclusion, altered myocyte adrenergic responses in the peri‐infarct, but not in the remote region, provide a source of triggered activity in vivo and of repolarization instability amplifying the substrate for re‐entry. These findings stimulate further exploration of region‐specific therapies targeting myocytes and autonomic modulation

    MSK-Mediated Phosphorylation of Histone H3 Ser28 Couples MAPK Signalling with Early Gene Induction and Cardiac Hypertrophy

    Get PDF
    Heart failure is a leading cause of death that develops subsequent to deleterious hypertrophic cardiac remodelling. MAPK pathways play a key role in coordinating the induction of gene expression during hypertrophy. Induction of the immediate early gene (IEG) response including activator protein 1 (AP-1) complex factors is a necessary and early event in this process. How MAPK and IEG expression are coupled during cardiac hypertrophy is not resolved. Here, in vitro, in rodent models and in human samples, we demonstrate that MAPK-stimulated IEG induction depends on the mitogen and stress-activated protein kinase (MSK) and its phosphorylation of histone H3 at serine 28 (pH3S28). pH3S28 in IEG promoters in turn recruits Brg1, a BAF60 ATP-dependent chromatin remodelling complex component, initiating gene expression. Without MSK activity and IEG induction, the hypertrophic response is suppressed. These studies provide new mechanistic insights into the role of MAPK pathways in signalling to the epigenome and regulation of gene expression during cardiac hypertrophy

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Myofibroblast modulation of cardiac myocyte structure and function

    No full text
    After myocardial infarction, resident fibroblasts (Fb) differentiate towards myofibroblasts (MyoFb), generating the scar tissue and the interstitial fibrosis seen in the adjacent myocardium. Fb and MyoFb have the potential to interact with cardiac myocytes (CMs) but insight into the phenotype-specific role and mode of interaction is still incomplete. Our objectives are to further define the modulation of CMs by MyoFbs compared to Fbs, as well as the role of direct contact through gap junctions vs. soluble mediators, using Fbs and CMs from pig left ventricle. Fbs were treated to maintain an undifferentiated state (SD-208) or to attain full differentiation to MyoFb (TGF-β1). Fbs and MyoFbs were co-cultured with CMs, with the possibility of direct contact or separated by a Thincert membrane. Only in direct co-culture, both Fbs and MyoFbs were able to decrease CM viability after 2 days. Only MyoFbs induced significant distal spreading of CMs in both direct and indirect co-culture. MyoFbs, but not Fbs, readily made connections with CMs in direct co-culture and connexin 43 expression in MyoFb was higher than in Fb. When coupled to CMs, MyoFbs reduced the CM action potential duration and hyperpolarized the CM resting membrane potential. Uncoupling reversed these effects. In conclusion, MyoFbs, but not Fbs, alter the CM structural phenotype. MyoFbs, but not Fbs, are likely to electrically connect to CMs and thereby modulate the CM membrane potential. These data provide further support for an active role of MyoFbs in the arrhythmogenic substrate after cardiac remodelling.status: publishe

    Reduced mitochondrial respiration in the ischemic as well as in the remote nonischemic region in postmyocardial infarction remodeling

    No full text
    Scarring and remodeling of the left ventricle (LV) after myocardial infarction (MI) results in ischemic cardiomyopathy with reduced contractile function. Regional differences related to persisting ischemia may exist. We investigated the hypothesis that mitochondrial function and structure is altered in the myocardium adjacent to MI with reduced perfusion (MIadjacent) and less so in the remote, nonischemic myocardium (MIremote). We used a pig model of chronic coronary stenosis and MI (n = 13). Functional and perfusion MR imaging 6 wk after intervention showed reduced ejection fraction and increased global wall stress compared with sham-operated animals (Sham; n = 14). Regional strain in MIadjacent was reduced with reduced contractile reserve; in MIremote strain was also reduced but responsive to dobutamine and perfusion was normal compared with Sham. Capillary density was unchanged. Cardiac myocytes isolated from both regions had reduced basal and maximal oxygen consumption rate, as well as through complex I and II, but complex IV activity was unchanged. Reduced respiration was not associated with detectable reduction of mitochondrial density. There was no significant change in AMPK or glucose transporter expression levels, but glycogen content was significantly increased in both MIadjacent and MIremote Glycogen accumulation was predominantly perinuclear; mitochondria in this area were smaller but only in MIadjacent where also subsarcolemmal mitochondria were smaller. In conclusion, after MI reduction of mitochondrial respiration and glycogen accumulation occur in all LV regions suggesting that reduced perfusion does not lead to additional specific changes and that increased hemodynamic load is the major driver for changes in mitochondrial function.status: publishe
    corecore