44 research outputs found

    Experimental Assessment of Moringa oleifera Leaf and Fruit for Its Antistress, Antioxidant, and Scavenging Potential Using In Vitro and In Vivo Assays

    Get PDF
    We have investigated effect of Moringa oleifera leaf and fruit extracts on markers of oxidative stress, its toxicity evaluation, and correlation with antioxidant properties using in vitro and in vitro assays. The aqueous extract of leaf was able to increase the GSH and reduce MDA level in a concentration-dependent manner. The ethanolic extract of fruit showed highest phenolic content, strong reducing power and free radical scavenging capacity. The antioxidant capacity of ethanolic extract of both fruit and leaf was higher in the in vitro assay compared to aqueous extract which showed higher potential in vivo. Safety evaluation studies showed no toxicity of the extracts up to a dose of 100 mg/kg body weight. Our results support the potent antioxidant activity of aqueous and ethanolic extract of Moringa oleifera which adds one more positive attribute to its known pharmacological importance

    Autophagy inhibition by chloroquine prevents increase in blood pressure and preserves endothelial functions

    Get PDF
    Purpose: To determine the effects of lysosomal inhibition of autophagy by chloroquine (CHQ) onhypertension-associated changes in the endothelial functions. Method: Angiotensin II (Ang II)-treated human endothelial cell line EA.hy926 and renovascularhypertensive rats were subjected to CHQ treatment (in vitro: 0.5, 1, and 2.5 μM; in vivo: 50 mg/kg/dayfor three weeks). Changes in the protein expressions of LC3b II (autophagosome formation marker) andp62 (autophagy flux marker) were assessed using immunoblotting. Cell migration assay, tubuleformation assay (in vitro), and organ bath studies (in vivo) were performed to evaluate the endothelialfunctions. Hemodynamic parameters were measured as well. Results: A higher expression of LC3b II and a reduced expression of p62 observed in the Ang II-treatedendothelial cells, as well as in the aorta of the hypertensive rats, indicated enhanced autophagy.Treatment with CHQ resulted in reduced autophagy flux (in vitro as well as in vivo) and suppressed AngII-induced endothelial cell migration and angiogenesis (in vitro). The treatment with CHQ was alsoobserved to prevent increase in blood pressure in hypertensive rats and preserved acetylcholineinducedrelaxation in phenylephrine-contracted aorta from the hypertensive rats. In addition, chloroquineattenuated Ang II-induced contractions in the aorta of normotensive as well as hypertensive rats. Conclusion: These observations indicated that CHQ lowers the blood pressure and preserves thevascular endothelial function during hypertension. Keywords: Angiotensin II, Autophagy, Chloroquine, Endothelial function, Hypertension, Vasculardysfunctio

    Synthesis, structure, spectral and electron-transfer properties of octahedral-[Co<SUP>III</SUP>(L)<SUB>2</SUB>]<SUP>+</SUP>/[Zn<SUP>II</SUP>(L)<SUB>2</SUB>] and square planar-[Cu<SUP>II</SUP>(L){OC(=O)CH<SUB>3</SUB>}] complexes incorporating anionic form of tridentate bis(8-quinolinyl)amine [N<SUP>1</SUP>C<SUB>9</SUB>H<SUB>6</SUB>-N<SUP>2</SUP>-C<SUB>9</SUB>H<SUB>6</SUB>N<SUP>3</SUP>, L<SUP>-</SUP>] ligand

    Get PDF
    The reaction of bis(8-quinolinyl)amine [N1C9H6-N2H-C9H6N3, LH] with CoII(ClO4)2 . 6H2O in methanol under aerobic conditions results in a new class of [CoIIIN6]+ (1+) chromophore incorporating an sp2-amido nitrogen center (N2) in the ligand frame. During the course of the reaction, the cobalt ion has been oxidized from its starting +2 oxidation state to +3 state in 1. The reaction of LH with the Cu-acetate yields monomeric square planar complex, [CuII(L){OC(=O)CH3}] (2). The same copper complex 2 is also obtained from Cu(ClO4) . 6H2O in presence of CH3COONa as base. On the other hand, the reaction of Zn(ClO4) . 6H2O with LH results in octahedral complex ZnII(L)2 (3). The Cu(II) complex 2 displays a four-line EPR spectrum at room temperature. Crystal structure of the free ligand (LH) shows that the amine proton [N(2)H] is hydrogen-bonded with the terminal quinoline nitrogen centers [N(1) and N(3)]. The crystal structure of 1 confirms the meridional geometry of the complex cation. The square planar geometry of copper complex 2 is confirmed by its crystal structure where the acetate function behaves as a monodentate ligand. The free ligand, LH, is found to be highly acidic in acetonitrile-water (1:1) medium and correspondingly the amine proton (NH) readily dissociates leading to its L- form even in absence of any external base. The pKb value of L- is determined to be 2.6. Both cobalt and copper complexes do not show any expected spin-allowed d-d transitions, possibly have masked by the intense charge-transfer transitions. However, in case of cobalt complex 1, one very weak unusual spin-forbidden 1A1g &#8594; 3T1g transition has been observed at 935 nm. The quasi-reversible cobalt (III)&#8596; cobalt(II) reduction of 1 is observed at E0, -1.0 V versus SCE. The reactions of bis(8-quinolinyl)amine [N1C9H6-N2H-C9H6N3, LH] with CoII(ClO4)2 . 6H2O, ZnII(ClO4)2 . 6H2O and CuII-acetate result in octahedral-[CoIII(L-)2]+ and [ZnII(L-)2] and square planar-[CuII(L-){-OC(=O)CH3}] complexes, respectively, incorporating an sp2-amido nitrogen center (N2) in the coordinated ligand frame of L. The structural, spectral and electrochemical aspects of the complexes have been described

    A Comparative Study between Antibody and Peptide Conjugated Gold Nanoparticles for In Vivo Targeting of EGFR in Pancreatic Cancer Bearing Mice Models [abstract]

    Get PDF
    Nanoscience Poster SessionPancreatic cancer is the fourth leading cause of cancer related deaths in the United States due to its severe aggressiveness and lethal malignancy. Epidermal Growth Factor Receptor (EGFR) is over expressed in more than 95% of human pancreatic cancer patients. A number of peptides and monoclonal antibodies have been developed to target the EGFR in pancreatic cancer. Our research has focused on developing EGFR targeting biomolecule conjugated gold nanoparticles for the diagnosis and staging of various cancers. In this study, we synthesized a series of Antibody EGFR and EGFR-peptide conjugated AuNPs. We investigated the in vivo EGFR targeting characteristics of these conjugates in pancreatic tumor bearing SCID mice models. Our investigation establishes that the peptide conjugated AuNPs have high in vivo mobility and targets pancreatic tumor effectively. We have also established that EGFR-peptide -AuNP conjugates act as better X-ray contrast agents for early detection of pancreatic cancer in mice models. The details of this comparative study will be presented in this poster

    Relative study between anti-EGFR and GE-11 peptide conjugated gold nanoparticles for in vivo targeting in pancreatic cancer [abstract]

    Get PDF
    Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States due to its severe aggressiveness and lethal malignancy. Epidermal Growth Factor Receptor (EGFR) is over expressed in more than 95% of human pancreatic cancer patients. A number of peptides and monoclonal antibodies have been developed to target the EGFR in pancreatic cancer. Our research has focused on developing EGFR targeting biomolecule conjugated gold nanoparticles for the diagnosis and staging of various cancers. In this study, we have synthesized a series of Antibody EGFR and EGFR-peptide (GE-11) conjugated AuNPs. We investigated the in vivo EGFR targeting characteristics of these conjugates in pancreatic tumor bearing SCID mice models. Our investigation has provided evidence that the peptide conjugated AuNPs have high in vivo mobility and targets pancreatic tumor effectively. We have also established that the EGFR-peptide-AuNP conjugates serve as better X-ray contrast agents for early detection of pancreatic cancer in mice models. The details of this comparative study will be presented in this poster

    Sliding wear behavior of submicron-grained alumina in biological environment

    Get PDF
    Sliding wear behavior of sintered alumina with grain sizes between 0.45 and 4 mu m was studied in bovine serum environment with unidirectional pin-on-disc wear testing machine. Submicron grained alumina of average grain size of G = 0.45 pm exhibits lowest wear factor among the others. It was found that grain pull out or localized grain dislodgement caused by coalescence of grain boundary microcracks is the basic wear mechanism of submicron grained alumina though the extent of cracking and pull-out was substantially less than that with higher grained material. However, in few cases, some areas where substantial volume of material was removed following pull-out of cluster of grains have also been observe

    Photoacoustic Detection of Circulating Prostate, Breast and Pancreatic Cancer cells using targeted Gold Nanoparticles: Implications of Green Nanotechnology in Molecular Imaging

    Get PDF
    Nanoscience Poster SessionCirculating tumor cells are hallmarks of metastasis cancer. The presence of circulating tumor cells in blood stream correlates with the severity of disease. Photoacoustic imaging (PA) of tumor cells is an attractive technique for potential applications in diagnostic imaging of circulating tumor cells. However, the sensitivity of photoacoustic imaging of tumor cells depends on their photon absorption characteristics. In this context, gold nanoparticle embedded tumor cells offer significant advantages for diagnostic PA of single cells. As the PA absorptivity is directly proportional to the number of nanoparticles embedded within tumor cells, the propensity of nanoparticles to internalize within tumor cells will dictate the sensitivity for single cell detection. We are developing biocompatible gold nanoparticles to use them as probes as part of our ongoing effort toward the application of X ray CT Imaging, Ultra Sound (US) and photoacoustic imaging of circulating breast, pancreatic and prostate tumor cells. We, herein report our latest results which have shown that epigallocatechin gallate (EGCG)-conjugated gold nanoparticles (EGCG-AuNPs) internalize selectively within cancer cells providing threshold concentrations required for photo acoustic signals. In this presentation, we will describe, our recent results on the synthesis and characterization of EGCG gold nanoparticles, their cellular internalization and photo acoustic imaging of PC-3 prostate cancer cells and PANC-1 pancreatic cancer cells

    Developing Tailor-Made Microbial Consortium for Effluent Remediation

    Get PDF
    The work describes a biofilm-based soluble sulphate reduction system, which can treat up to 1600 ppm of soluble sulphate within 3.5 hours of incubation to discharge level under ambient condition using a well-characterized sulphate-reducing bacterial (SRB) consortium. This system ensures the treatment of 1509 litres of sulphate solution in 24 hours using a 220-litre bioreactor. Performance of the system during series operation was compromised, indicating the presence of inhibitor in solution at a toxic level. A single unit bioreactor would be the ideal configuration for this consortium. Modified designs of bioreactors were tested for optimization of the process using response surface methodology (RSM), where the system could function optimally at an initial sulphate concentration of 1250 ppm with a flow rate of 1.8 litre/hour. The time course of sulphate reduction yielded a parabolic profile (with coefficient of determination r 2 = 0.99 and p value < 0.05). The rate of sulphate reduction was found to be independent of seasonal variation as well as the specific design characteristic
    corecore