88 research outputs found

    High-Level Macrolide Resistance Due to the Mega Element [mef(E)/mel] in Streptococcus pneumoniae

    Get PDF
    Transferable genetic elements conferring macrolide resistance in Streptococcus pneumoniae can encode the efflux pump and ribosomal protection protein, mef(E)/mel, in an operon of the macrolide efflux genetic assembly (Mega) element- or induce ribosomal methylation through a methyltransferase encoded by erm(B). During the past 30 years, strains that contain Mega or erm(B) or both elements on Tn2010 and other Tn916-like composite mobile genetic elements have emerged and expanded globally. In this study, we identify and define pneumococcal isolates with unusually high-level macrolide resistance (MICs > 16 μg/ml) due to the presence of the Mega element [mef(E)/mel] alone. High-level resistance due to mef(E)/mel was associated with at least two specific genomic insertions of the Mega element, designated Mega-2.IVa and Mega-2.IVc. Genome analyses revealed that these strains do not possess erm(B) or known ribosomal mutations. Deletion of mef(E)/mel in these isolates eliminated macrolide resistance. We also found that Mef(E) and Mel of Tn2010-containing pneumococci were functional but the high-level of macrolide resistance was due to Erm(B). Using in vitro competition experiments in the presence of macrolides, high-level macrolide-resistant S. pneumoniae conferred by either Mega-2.IVa or erm(B), had a growth fitness advantage over the lower-level, mef(E)/mel-mediated macrolide-resistant S. pneumoniae phenotypes. These data indicate the ability of S. pneumoniae to generate high-level macrolide resistance by macrolide efflux/ribosomal protection [Mef(E)/Mel] and that high-level resistance regardless of mechanism provides a fitness advantage in the presence of macrolides

    \u3ci\u3ePseudomonas syringae\u3c/i\u3e Type III Chaperones ShcO1, ShcS1, and ShcS2 Facilitate Translocation of Their Cognate Effectors and Can Substitute for Each Other in the Secretion of HopO1-1

    Get PDF
    The Pseudomonas syringae type III secretion system (TTSS) translocates effector proteins into plant cells. Several P. syringae effectors require accessory proteins called type III chaperones (TTCs) to be secreted via the TTSS. We characterized the hopO1-1, hopS1, and hopS2 operons in P. syringae pv. tomato DC3000; these operons encode three homologous TTCs, ShcO1, ShcS1, and ShcS2. ShcO1, ShcS1, and ShcS2 facilitated the type III secretion and/or translocation of their cognate effectors HopO1-1, HopS1, and HopS2, respectively. ShcO1 and HopO1-1 interacted with each other in yeast two-hybrid and coimmunoprecipitation assays. Interestingly, ShcS1 and ShcS2 were capable of substituting for ShcO1 in facilitating HopO1-1 secretion and translocation and each TTC was able to bind the other’s cognate effectors in yeast two-hybrid assays. Moreover, ShcO1, ShcS1, and ShcS2 all bound to the middle-third region of HopO1-1. The HopS2 effector possessed atypical P. syringae TTSS N-terminal characteristics and was translocated in low amounts. A site-directed HopS2 mutation that introduced a common N-terminal characteristic from other P. syringae type III secreted substrates increased HopS2 translocation, supporting the idea that this characteristic functions as a secretion signal. Additionally, hopO1-2 and hopT1-2 were shown to encode effectors secreted via the DC3000 TTSS. Finally, a DC3000 hopO1-1 operon deletion mutant produced disease symptoms similar to those seen with wild-type DC3000 but was reduced in its ability to multiply in Arabidopsis thaliana. The existence of TTCs that can bind to dissimilar effectors and that can substitute for each other in effector secretion provides insights into the nature of how TTCs function

    Surprises in the Orbital Magnetic Moment and g-Factor of the Dynamic Jahn-Teller Ion C_{60}^-

    Full text link
    We calculate the magnetic susceptibility and g-factor of the isolated C_{60}^- ion at zero temperature, with a proper treatment of the dynamical Jahn-Teller effect, and of the associated orbital angular momentum, Ham-reduced gyromagnetic ratio, and molecular spin-orbit coupling. A number of surprises emerge. First, the predicted molecular spin-orbit splitting is two orders of magnitude smaller than in the bare carbon atom, due to the large radius of curvature of the molecule. Second, this reduced spin-orbit splitting is comparable to Zeeman energies, for instance, in X-band EPR at 3.39KGauss, and a field dependence of the g-factor is predicted. Third, the orbital gyromagnetic factor is strongly reduced by vibron coupling, and so therefore are the effective weak-field g-factors of all low-lying states. In particular, the ground-state doublet of C_{60}^- is predicted to show a negative g-factor of \sim -0.1.Comment: 19 pages RevTex, 2 postscript figures include

    Loss of coral reef growth capacity to track future increases in sea level

    Get PDF
    Water-depths above coral reefs is predicted to increase due to global sea-level rise (SLR). As ecological degradation inhibits the vertical accretion of coral reefs, it is likely that coastal wave exposure will increase but there currently exists a lack of data in projections concerning local rates of reef growth and local SLR. In this study we have aggregated ecological data of more than 200 tropical western Atlantic and Indian Ocean reefs and calculated their vertical growth which we have then compared with recent and projected rates of SLR across different Representative Concentration Pathway (RCP) scenarios. While many reefs currently show vertical growth that would be sufficient to keep-up with recent historic SLR, future projections under scenario RCP4.5 reveal that without substantial ecological recovery many reefs will not have the capacity to track SLR. Under RCP8.5, we predict that mean water depth will increase by over half a metre by 2100 across the majority of reefs. We found that coral cover strongly predicted whether a reef could track SLR, but that the majority of reefs had coral cover significantly lower than that required to prevent reef submergence. To limit reef submergence, and thus the impacts of waves and storms on adjacent coasts, climate mitigation and local impacts that reduce coral cover (e.g., local pollution and physical damage through development land reclamation) will be necessary

    \u3ci\u3ePseudomonas syringae\u3c/i\u3e Type III Chaperones ShcO1, ShcS1, and ShcS2 Facilitate Translocation of Their Cognate Effectors and Can Substitute for Each Other in the Secretion of HopO1-1

    Get PDF
    The Pseudomonas syringae type III secretion system (TTSS) translocates effector proteins into plant cells. Several P. syringae effectors require accessory proteins called type III chaperones (TTCs) to be secreted via the TTSS. We characterized the hopO1-1, hopS1, and hopS2 operons in P. syringae pv. tomato DC3000; these operons encode three homologous TTCs, ShcO1, ShcS1, and ShcS2. ShcO1, ShcS1, and ShcS2 facilitated the type III secretion and/or translocation of their cognate effectors HopO1-1, HopS1, and HopS2, respectively. ShcO1 and HopO1-1 interacted with each other in yeast two-hybrid and coimmunoprecipitation assays. Interestingly, ShcS1 and ShcS2 were capable of substituting for ShcO1 in facilitating HopO1-1 secretion and translocation and each TTC was able to bind the other’s cognate effectors in yeast two-hybrid assays. Moreover, ShcO1, ShcS1, and ShcS2 all bound to the middle-third region of HopO1-1. The HopS2 effector possessed atypical P. syringae TTSS N-terminal characteristics and was translocated in low amounts. A site-directed HopS2 mutation that introduced a common N-terminal characteristic from other P. syringae type III secreted substrates increased HopS2 translocation, supporting the idea that this characteristic functions as a secretion signal. Additionally, hopO1-2 and hopT1-2 were shown to encode effectors secreted via the DC3000 TTSS. Finally, a DC3000 hopO1-1 operon deletion mutant produced disease symptoms similar to those seen with wild-type DC3000 but was reduced in its ability to multiply in Arabidopsis thaliana. The existence of TTCs that can bind to dissimilar effectors and that can substitute for each other in effector secretion provides insights into the nature of how TTCs function
    • …
    corecore