170 research outputs found

    Estrategias empleadas en las provincias imperiales: perspectivas prehispánicas y coloniales en Mesoamérica

    Get PDF
    We explore concepts and evidence relating to strategies employed by people in imperial provinces, using archaeological and ethnohistoric evidence from Mesoamerica. For convenience, we refer to these as provincial strategies. By contrasting Late Postclassic data for the Aztec empire and Colonial data for the Spanish empire in Mexico, we explore their commonalities and differences to advance a more systematic understanding of provincial strategies. Our approach rests on the premise that, just as imperial powers had strategies for administering their subjects, the provincial subjects also employed various strategies for protecting and improving their position within the empire. Nine provincial strategies operative in Mesoamerica were affected by geographic distance and environmental factors, duration of imperial rule, social class, and differences in the economic and social integration of subject populations

    Alianzas matrimoniales coloniales entre caciques mixtecos: El caso de Acatlan-Petlalcingo

    Get PDF
    Marriage alliances among governing families were an important instrument of political integration in Postclassic Mesoamerica, especially in the Mixteca. Alliances among Mixtec nobles persisted during the colonial period, although after the sixteenth century the caciques lost much of their political power to the gobernadores and the Cabildos. In this essay I investigate the significance of alliances among Mixtec caciques through the marriages of eight generations of the Villagómez family of Acatlan and Petlalcingo, from 1669 until the mid-nineteenth century. I argue that only the first of these marriages was politically strategic.Las alianzas matrimoniales entre familias gobernantes fueron un instrumento importante de integración política en la Mesoamérica Posclásica, especialmente en la Mixteca. Estas alianzas entre los nobles mixtecos persistieron a través de la época colonial, aunque después del siglo XVI los caciques perdieron mucho de su poder político ante los gobernadores y los Cabildos. En este ensayo investigo el significado de las alianzas entre caciques mixtecos por medio de los casamientos de ocho generaciones de la familia Villagómez de Acatlan y Petlalcingo, desde 1669 hasta mediados del siglo XIX. Sostengo que sólo el primero de estos enlaces matrimoniales fue políticamente estratégico

    Emission Spectrum of a Dipole in a Semi-infinite Periodic Dielectric Structure: Effect of the Boundary

    Full text link
    The emission spectrum of a dipole embedded in a semi-infinite photonic crystal is calculated. For simplicity we study the case in which the dielectric function is sinusoidally modulated only along the direction perpendicular to the boundary surface plane. In addition to oscillations of the emission rate with the distance of the dipole from the interface we also observed that the shape of the emission spectrum srongly depends on the \em initial \em phase of the dielectric modulation. When the direction of light propagation inside the periodic structure is not normal to the boundary surface plane we observed aditional singularities in the emission spectrum, which arise due to different angle-dependence of the Bragg stop-band for TETE and TMTM polarizations.Comment: 14 pages, 6 figures, to appear in Phys Rev

    Complementary networks of cortical somatostatin interneurons enforce layer specific control

    Get PDF
    The neocortex is functionally organized into layers. Layer four receives the densest bottom up sensory inputs, while layers 2/3 and 5 receive top down inputs that may convey predictive information. A subset of cortical somatostatin (SST) neurons, the Martinotti cells, gate top down input by inhibiting the apical dendrites of pyramidal cells in layers 2/3 and 5, but it is unknown whether an analogous inhibitory mechanism controls activity in layer 4. Using high precision circuit mapping, in vivo optogenetic perturbations, and single cell transcriptional profiling, we reveal complementary circuits in the mouse barrel cortex involving genetically distinct SST subtypes that specifically and reciprocally interconnect with excitatory cells in different layers: Martinotti cells connect with layers 2/3 and 5, whereas non-Martinotti cells connect with layer 4. By enforcing layer-specific inhibition, these parallel SST subnetworks could independently regulate the balance between bottom up and top down input

    Coherent radiation from neutral molecules moving above a grating

    Get PDF
    We predict and study the quantum-electrodynamical effect of parametric self-induced excitation of a molecule moving above the dielectric or conducting medium with periodic grating. In this case the radiation reaction force modulates the molecular transition frequency which results in a parametric instability of dipole oscillations even from the level of quantum or thermal fluctuations. The present mechanism of instability of electrically neutral molecules is different from that of the well-known Smith-Purcell and transition radiation in which a moving charge and its oscillating image create an oscillating dipole. We show that parametrically excited molecular bunches can produce an easily detectable coherent radiation flux of up to a microwatt.Comment: 4 page

    Two-Photon Microscopy for Non-Invasive, Quantitative Monitoring of Stem Cell Differentiation

    Get PDF
    BACKGROUND: The engineering of functional tissues is a complex multi-stage process, the success of which depends on the careful control of culture conditions and ultimately tissue maturation. To enable the efficient optimization of tissue development protocols, techniques suitable for monitoring the effects of added stimuli and induced tissue changes are needed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present the quantitative use of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) as a noninvasive means to monitor the differentiation of human mesenchymal stem cells (hMSCs) using entirely endogenous sources of contrast. We demonstrate that the individual fluorescence contribution from the intrinsic cellular fluorophores NAD(P)H, flavoproteins and lipofuscin can be extracted from TPEF images and monitored dynamically from the same cell population over time. Using the redox ratio, calculated from the contributions of NAD(P)H and flavoproteins, we identify distinct patterns in the evolution of the metabolic activity of hMSCs maintained in either propagation, osteogenic or adipogenic differentiation media. The differentiation of these cells is mirrored by changes in cell morphology apparent in high resolution TPEF images and by the detection of collagen production via SHG imaging. Finally, we find dramatic increases in lipofuscin levels in hMSCs maintained at 20% oxygen vs. those in 5% oxygen, establishing the use of this chromophore as a potential biomarker for oxidative stress. CONCLUSIONS/SIGNIFICANCE: In this study we demonstrate that it is possible to monitor the metabolic activity, morphology, ECM production and oxidative stress of hMSCs in a non-invasive manner. This is accomplished using generally available multiphoton microscopy equipment and simple data analysis techniques, such that the method can widely adopted by laboratories with a diversity of comparable equipment. This method therefore represents a powerful tool, which enables researchers to monitor engineered tissues and optimize culture conditions in a near real time manner

    Target selection and annotation for the structural genomics of the amidohydrolase and enolase superfamilies

    Get PDF
    To study the substrate specificity of enzymes, we use the amidohydrolase and enolase superfamilies as model systems; members of these superfamilies share a common TIM barrel fold and catalyze a wide range of chemical reactions. Here, we describe a collaboration between the Enzyme Specificity Consortium (ENSPEC) and the New York SGX Research Center for Structural Genomics (NYSGXRC) that aims to maximize the structural coverage of the amidohydrolase and enolase superfamilies. Using sequence- and structure-based protein comparisons, we first selected 535 target proteins from a variety of genomes for high-throughput structure determination by X-ray crystallography; 63 of these targets were not previously annotated as superfamily members. To date, 20 unique amidohydrolase and 41 unique enolase structures have been determined, increasing the fraction of sequences in the two superfamilies that can be modeled based on at least 30% sequence identity from 45% to 73%. We present case studies of proteins related to uronate isomerase (an amidohydrolase superfamily member) and mandelate racemase (an enolase superfamily member), to illustrate how this structure-focused approach can be used to generate hypotheses about sequence–structure–function relationships
    corecore