5 research outputs found

    āđ€āļ—āļ„āļ™āļīāļ„āļāļēāļĢāļŠāļāļąāļ”āļ™āđ‰āļģāļĄāļąāļ™āđāļĨāļ°āļāļēāļĢāļœāļĨāļīāļ•āđ„āļšāđ‚āļ­āļ”āļĩāđ€āļ‹āļĨāļˆāļēāļāļ™āđ‰āļģāļĄāļąāļ™āđ€āļĄāļĨāđ‡āļ”āļāļĢāļ°āļšāļ

    Get PDF
    āļ§āļēāļĢāļŠāļēāļĢāļ§āļīāļŠāļēāļāļēāļĢāđāļĨāļ°āļ§āļīāļˆāļąāļĒ āļĄāļ—āļĢ.āļžāļĢāļ°āļ™āļ„āļĢ, 13(1) : 149-157This paper presents the experimental results of the oil extraction process from wild almond seeds by mechanical and chemical methods. The optimum conditions for the biodiesel production from the extracted oil via transesterification reaction using methanol and potassium hydroxide (KOH) are reported. Chemical extraction was found to be an effective technique for wild almond oil extraction. Simple distillation was used as oil extraction unit applying 140 ml of n-hexane as solvent at 70šC for 20 min. The oil yield was 43.11Âą0.98%. This extracted oil was used as raw material for biodiesel production with the maximum yield of 83.20Âą1.11%. The optimum conditions for biodiesel production were the catalyst loading of 0.5 wt% and 9:1 molar ratio of methanol to oil in a controlled reaction temperature of 70šC for 60 min. Finally, the properties of biodiesel were analyzed and most properties met the requirements of the department of energy business standard.Rajamangala University of Technology Phra Nakho

    āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ•āļąāļ§āđ€āļĢāđˆāļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāđāļšāļšāļ§āļīāļ§āļīāļ˜āļžāļąāļ™āļ˜āļļāđŒāđāļ„āļĨāđ€āļ‹āļĩāļĒāļĄāļ­āļ­āļāđ„āļ‹āļ”āđŒāļˆāļēāļāļ§āļąāļŠāļ”āļļāđ€āļŦāļĨāļ·āļ­āđƒāļŠāđ‰āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāđ„āļšāđ‚āļ­āļ”āļĩāđ€āļ‹āļĨImprovement of Efficiency of Calcium Oxide as a Heterogeneous Catalyst Derived from Material Waste for Biodiesel Production

    No full text
    āļāļēāļĢāļœāļĨāļīāļ•āđ„āļšāđ‚āļ­āļ”āļĩāđ€āļ‹āļĨāļˆāļēāļāļ•āļąāļ§āđ€āļĢāđˆāļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāđ€āļ„āļĄāļĩāļ—āļģāđƒāļŦāđ‰āļĄāļĩāļ•āđ‰āļ™āļ—āļļāļ™āļ—āļĩāđˆāļŠāļđāļ‡āđāļĨāļ°āļĒāļąāļ‡āļŠāđˆāļ‡āļœāļĨāļāļĢāļ°āļ—āļšāļ•āđˆāļ­āļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļˆāļķāļ‡āļŠāļ™āđƒāļˆāļĻāļķāļāļĐāļēāļāļēāļĢāđƒāļŠāđ‰āļ•āļąāļ§āđ€āļĢāđˆāļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāđƒāļ™āļĢāļđāļ›āđāļšāļšāļ•āļąāļ§āđ€āļĢāđˆāļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļ§āļīāļ§āļīāļ˜āļžāļąāļ™āļ˜āļļāđŒāļˆāļēāļāļ§āļąāļŠāļ”āļļāđ€āļŦāļĨāļ·āļ­āļ—āļīāđ‰āļ‡āļˆāļēāļāđ€āļ›āļĨāļ·āļ­āļāđ„āļ‚āđˆāđ„āļāđˆ āđ€āļ›āļĨāļ·āļ­āļāđ„āļ‚āđˆāļ™āļāļāļĢāļ°āļ—āļē āđāļĨāļ°āđ€āļ›āļĨāļ·āļ­āļāļŦāļ­āļĒāļ™āļēāļ‡āļĢāļĄ āđ€āļžāļ·āđˆāļ­āļĨāļ”āļ•āđ‰āļ™āļ—āļļāļ™āļāļēāļĢāļœāļĨāļīāļ•āđāļĨāļ°āļĒāļąāļ‡āđ€āļ›āđ‡āļ™āļĄāļīāļ•āļĢāļ•āđˆāļ­āļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄ āđ€āļĢāļīāđˆāļĄāļ•āđ‰āļ™āļˆāļēāļāļāļēāļĢāđ€āļ•āļĢāļĩāļĒāļĄāļ•āļąāļ§āđ€āļĢāđˆāļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļāļēāļĢāļšāļ”āđāļĨāļ°āļāļēāļĢāđ€āļœāļēāđ€āļžāļ·āđˆāļ­āđ€āļ›āļĨāļĩāđˆāļĒāļ™ CaCO3 āđƒāļŦāđ‰āļ­āļĒāļđāđˆāđƒāļ™āļĢāļđāļ›āļ‚āļ­āļ‡ CaO āļŠāļģāļŦāļĢāļąāļšāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāđ„āļšāđ‚āļ­āļ”āļĩāđ€āļ‹āļĨāļˆāļēāļāļ™āđ‰āļģāļĄāļąāļ™āđƒāļŠāđ‰āđāļĨāđ‰āļ§ āļˆāļēāļāļ™āļąāđ‰āļ™āļ—āļģāļāļēāļĢāđ€āļžāļīāđˆāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ‚āļ­āļ‡āļ•āļąāļ§āđ€āļĢāđˆāļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļāļēāļĢāļ•āļĢāļķāļ‡ CaO āļšāļ™āļ•āļąāļ§āļĢāļ­āļ‡āļĢāļąāļšāđ„āļšāđ‚āļ­āļŠāļēāļĢāđŒ āļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļāļēāļĢāļšāļ”āļœāļŠāļĄ (Ch-CaOmixed) āđāļĨāļ°āļ§āļīāļ˜āļĩāļāļēāļĢāđāļžāļĢāđˆāļ‹āļķāļĄ (Ch-CaOimpregnate) āļœāļĨāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļžāļšāļ§āđˆāļē CaO āļ—āļĩāđˆāļœāļĨāļīāļ•āļˆāļēāļāđ€āļ›āļĨāļ·āļ­āļāđ„āļ‚āđˆāļ™āļāļāļĢāļ°āļ—āļēāđƒāļŦāđ‰āļĢāđ‰āļ­āļĒāļĨāļ°āļœāļĨāđ„āļ”āđ‰āļŠāļđāļ‡āļŠāļļāļ”āđƒāļ™āļāļēāļĢāļœāļĨāļīāļ•āđ„āļšāđ‚āļ­āļ”āļĩāđ€āļ‹āļĨ āļ—āļĩāđˆāļŠāļ āļēāļ§āļ°āļ•āļąāļ§āđ€āļĢāđˆāļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāđ€āļ›āļĨāļ·āļ­āļāđ„āļ‚āđˆāļ™āļāļāļĢāļ°āļ—āļēāļ›āļĢāļīāļĄāļēāļ“āļĢāđ‰āļ­āļĒāļĨāļ° 3 āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āđ‚āļ”āļĒāđ‚āļĄāļĨāđ€āļĄāļ—āļēāļ™āļ­āļĨāļ•āđˆāļ­āļ™āđ‰āļģāļĄāļąāļ™ 12:1 āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāđƒāļ™āļāļēāļĢāļ—āļģāļ›āļāļīāļāļīāļĢāļīāļĒāļē 2 āļŠāļąāđˆāļ§āđ‚āļĄāļ‡ āļ­āļļāļ“āļŦāļ āļđāļĄāļī 65 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āđƒāļŦāđ‰āļĢāđ‰āļ­āļĒāļĨāļ°āļœāļĨāđ„āļ”āđ‰āļŠāļđāļ‡āļŠāļļāļ” 87.14 āļœāļĨāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļāļēāļĢāļ•āļĢāļķāļ‡ CaO āļšāļ™āļ•āļąāļ§āļĢāļ­āļ‡āļĢāļąāļšāđ„āļšāđ‚āļ­āļŠāļēāļĢāđŒ āļžāļšāļ§āđˆāļēāļŠāļēāļĄāļēāļĢāļ–āđ€āļžāļīāđˆāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ‚āļ­āļ‡āļ•āļąāļ§āđ€āļĢāđˆāļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāđƒāļ™āļāļēāļĢāļœāļĨāļīāļ•āđ„āļšāđ‚āļ­āļ”āļĩāđ€āļ‹āļĨāļĨāđŒ āđ‚āļ”āļĒāļ•āļąāļ§āđ€āļĢāđˆāļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļŠāļ™āļīāļ” Ch-CaOimpregnate āđƒāļŦāđ‰āļ›āļĢāļīāļĄāļēāļ“āļĢāđ‰āļ­āļĒāļĨāļ°āļœāļĨāđ„āļ”āđ‰āļŠāļđāļ‡āļŠāļļāļ”āđ€āļ‰āļĨāļĩāđˆāļĒ 97.82 āļ‹āļķāđˆāļ‡āļĄāļĩāļ›āļĢāļīāļĄāļēāļ“āđ€āļĄāļ—āļīāļĨāđ€āļ­āļŠāđ€āļ—āļ­āļĢāđŒāđ€āļ›āđ‡āļ™āļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāļĢāđ‰āļ­āļĒāļĨāļ° 98.3 āđāļĨāļ°āļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāļžāļ·āđ‰āļ™āļāļēāļ™āđ‚āļ”āļĒāļĢāļ§āļĄāļ‚āļ­āļ‡āļ™āđ‰āļģāļĄāļąāļ™āđ„āļšāđ‚āļ­āļ”āļĩāđ€āļ‹āļĨāļ—āļĩāđˆāļœāļĨāļīāļ•āđ„āļ”āđ‰āļœāđˆāļēāļ™āđ€āļāļ“āļ‘āđŒāļĄāļēāļ•āļĢāļāļēāļ™āļāļĢāļĄāļ˜āļļāļĢāļāļīāļˆāļžāļĨāļąāļ‡āļ‡āļēāļ™ Biodiesel production via chemical catalytic conversion may lead to the high cost and a negative environmental impact. In this research, eco-friendly catalysts from chicken eggshell quail eggshell and oyster shell waste were used as heterogeneous catalyst to reduce cost of production. Firstly, an active CaO catalyst synthesis for converting CaCO3 into CaO was prepared by crushing and calcining for biodiesel production from waste cooking oil. Next, the applications of biochar supported CaO catalysts was used to enhance the catalytic efficiency for biodiesel reaction. Ch-CaOmixed and Ch-CaOimpregnate catalyst were prepared by mixed-grinding method and impregnation method, respectively. Under the optimal reaction condition, CaO from quail eggshell catalyst was the most effective catalyst for biodiesel production. The experimental results showed that using the quail eggshell catalyst loading at 3 wt%, methanol to oil molar ratio of 12 : 1, a reaction time of 2 h and temperature of 65 šC gave the maximum biodiesel yield of 87.14%. Biochar supported CaO could improve the catalyst efficiency for biodiesel production. The maximum yield of biodiesel produced was 97.82% under reaction conditions of Ch-CaOimpregnate with methyl ester of 98.3%. In the last phase of the study, the biodiesel properties were analyzed and it was found that the biodiesel properties meet the biodiesel standards issued by the Department of Energy Business

    Leucaena–Derived Biochar for Biodiesel Production

    Get PDF
    Giant leucaena wood was utilized to prepare heterogeneous catalysts through a fast pyrolysis method and chemical activation for transesterification. The obtained catalysts were investigated using SEM, CHNS/O analyzer, XRF and XRD. The influence of the concentration of KOH (3-9 M), catalyst amount (0.25-2.0 g), methanol to oil ratio (4:1-10:1), and reaction time (30-75 min) on FAME yield was also studied on transesterification reaction carried out at 60šC under a 750 rpm stirring speed. The experiment results demonstrate that chemical activation was required to improve the porosity of the catalyst. The result showed that a well-developed porous structure was observed, as the concentration of KOH increased activated biochar become more porous. 7M-KOH for chemical activation was the best condition to obtain a porous catalyst. It was found that the main factors affecting the FAME yield were dependent on various parameters including methanol: oil ratio, catalyst loading, reaction time and stirring speed via transesterification process. The highest yield of 94.06% was achieved on 0.5g of the catalyst activated by 7M-KOH, a methanol:oil ratio of 6:1 and a 1-hour reaction. The obtained biodiesel mainly composed of different fatty acid in follow order C18:1 > C16:0 > C18:2 > C18:0. Properties reached the ASTM D6751-12 and EN 14214:2012 standard, indicating that leucaena-derived biochar is potentially utilized in biodiesel production

    āļœāļĨāļ‚āļ­āļ‡āđ€āļ›āļĨāļ·āļ­āļāļŦāļļāđ‰āļĄāđ€āļĄāļĨāđ‡āļ”āļāļēāđāļŸāđāļĨāļ°āļāļēāļāļāļēāđāļŸāļ•āđˆāļ­āļŠāļĄāļšāļąāļ•āļīāļ‚āļ­āļ‡āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļŠāļĩāļ§āļĄāļ§āļĨāļ­āļąāļ”āđ€āļĄāđ‡āļ”

    Get PDF
    āļ§āļēāļĢāļŠāļēāļĢāļ§āļīāļŠāļēāļāļēāļĢāđāļĨāļ°āļ§āļīāļˆāļąāļĒ āļĄāļ—āļĢ.āļžāļĢāļ°āļ™āļ„āļĢ, 13(1) : 78-89The objective is to produce the biomass pellet fuel from coffee silverskin and spent of coffee grounds. To study the percentage of cassava powder as binder was mixed at 5, 10, 15 and 20% by weight and the best condition was chosen. Then, to study the ratio of coffee silverskin and spent of coffee grounds was 5 ratios (100 : 0, 75 : 25, 50 : 50, 25 : 75 and 0 : 100) on propertied of biomass pellet fuel. Characteristics and properties of raw materials and biomass pellet fuel were analyzed. The results found that the highest property of the biomass pellet fuel was 20% of cassava powder as binder. The biomass pellet from spent coffee grounds as main component was higher quality than coffee silverskin. The biomass pellet from spent coffee grounds was the maximum fuel property. The bulk density was 0.9699 0.0045 g/ cubic cm, shatter index was 92.6510 Âą 0.2102%, heating value was 17.2772 Âą 0.0319 MJ/kg and heat utilization efficiency was 16.59 Âą 0.02%. The results from the part of coffee silverskin and spent of coffee grounds ratio showed that the best ratio from 2 raw materials was 25 : 75 that gave the highest quality. The heating value was 17.1544 Âą 0.017 MJ/kg and heat utilization efficiency was 16.48 Âą 0.01%. In addition, the study also discovered that the biomass pellet had moisture contents in the levels acceptable under biomass standards. Thus, in summary, the coffee silverskin and spent coffee grounds had physical property and fuel property according to the standardization to be made into biomass pellet fuel. It considered to be one of alternative fuels in country permanently.Rajamangala University of Technology Phra Nakho
    corecore