551 research outputs found

    Impulsive phase solar flare X-ray polarimetry

    Get PDF
    The pioneering observational work in solar flare X-ray polarimetry was done in a series of satellite experiments by Tindo and his collaborators in the Soviet Union; initial results showed high levels of polarization in X-ray flares (up to 40%), although of rather low statistical significance, and these were generally interpreted as evidence for strong beaming of suprathermal electrons in the flare energy release process. However, the results of the polarimeter flown by the Columbia Astrophysics Laboratory as part of the STS-3 payload on the Space Shuttle by contrast showed very low levels of polarization. The largest value (observed during the impulsive phase of a single event) was 3.4% + or - 2.2%. At the same time but independent of the observational work, Leach and Petrosian (1983) showed that the high levels of polarization in the Tindo results were difficult to understand theoretically, since the electron beam is isotropized on an energy loss timescale. A subsequent comparison by Leach, Emslie, and Petrosian (1985) of the impulsive phase STS-3 result and the above theoretical treatment shows that the former is consistent with several current models and that a factor of approximately 3 improvement in sensitivity is needed to distinguish properly among the possibilities

    Infrared properties of serendipitous X-ray quasars

    Get PDF
    Near infrared measurements were obtained of 30 quasars originally found serendipitously as X-ray sources in fields of other objects. The observations show that the infrared characteristics of these quasars do not differ significantly from those of quasars selected by other criteria. Because this X-ray selected sample is subject to different selection biases than previous radio and optical surveys, this conclusion is useful in validating previous inferences regarding the infrared colors of 'typical' quasars

    Spectroscopy from 2 to 200 keV

    Get PDF
    The astrophysical processes responsible for line and continuum emission in the spectra range 2 keV to 200 keV are examined from the viewpoint of designing a spectrometer which would operate in this regime. Phenomena considered include fluorescent line radiation in X-ray binaries, magnetically shifted iron lines and cyclotron emission from neutron star surfaces, line emission from cosmically abundant elements in thermal plasmas, and nuclear deexcitation lines in fresh nucleosynthetically produced matter. An instrument consisting of a approximately 10 sq cm array of planar germanium detectors surrounded by a large sodium-iodide anticoincidence shield is described and projected background rates and sensitivities are considered. A sample observing program for a two-day shuttle-based mission is included as an example of the wide range of scientific questions which could be addressed by such an instrument

    Chemical-assisted physico-biological water mining system

    Full text link
    Water mining is the process of extracting valuable water from a sewerage network by treating raw sewage to high standards. A range of commercially viable water mining treatment technologies are now available to treat sewage to specified water quality targets. Most of these technologies have minimal plant footprint requirements, making them suitable for decentralised operations. This paper discusses a hybrid water mining system that includes chemically assisted fine solids separation followed by a biological treatment process. Results from the first proof testing of this water mining system in Sydney, Australia are presented. The results confirm the suitability of the hybrid system for producing high-quality water for non-potable reuse

    Comparison of measurements of the outer scale of turbulence by three different techniques

    Get PDF
    We have made simultaneous and nearly simultaneous measurements of L0, the outer scale of turbulence, at the Palomar Observatory by using three techniques: angle-of-arrival covariance measurements with the Generalized Seeing Monitor (GSM), differential-image-motion measurements with the adaptive-optics system on the Hale 5-m telescope, and fringe speed measurements with the Palomar Testbed Interferometer (PTI). The three techniques give consistent results, an outer scale of approximately 10-20 m, despite the fact that the spatial scales of the three instruments vary from 1 m for the GSM to 100 m for the PTI

    Velocity Profiles in Slowly Sheared Bubble Rafts

    Full text link
    Measurements of average velocity profiles in a bubble raft subjected to slow, steady-shear demonstrate the coexistence between a flowing state and a jammed state similar to that observed for three-dimensional foams and emulsions [Coussot {\it et al,}, Phys. Rev. Lett. {\bf 88}, 218301 (2002)]. For sufficiently slow shear, the flow is generated by nonlinear topological rearrangements. We report on the connection between this short-time motion of the bubbles and the long-time averages. We find that velocity profiles for individual rearrangement events fluctuate, but a smooth, average velocity is reached after averaging over only a relatively few events.Comment: typos corrected, figures revised for clarit

    Socio-hydrologic drivers of the pendulum swing between agricultural development and environmental health: A case study from Murrumbidgee River basin, Australia

    Full text link
    This paper presents a case study centred on the Murrumbidgee River basin in eastern Australia. It illustrates the dynamics of the balance between water extraction and use for food production, and efforts to mitigate and reverse consequent degradation of the riparian environment. In particular, the paper traces the history of a pendulum swing between an exclusive focus on agricultural development and food production in the initial stages and its attendant socio-economic benefits, followed by the gradual realization of the adverse environmental impacts, subsequent efforts to mitigate these with the use of remedial measures, and ultimately concerted efforts and externally imposed solutions to restore environmental health and ecosystem services. The 100-year history of development within the Murrumbidgee is divided into four eras, each underpinned by the dominance of different values and norms and turning points characterized by their changes. The various stages of development can be characterized by the dominance, in turn, of infrastructure systems, policy frameworks, economic instruments, and technological solutions. The paper argues that, to avoid these costly pendulum swings, management needs to be underpinned by long-term coupled socio-hydrologic system models that explicitly include the two-way coupling between human and hydrological systems, including the slow evolution of human values and norms relating to water and the environment. Such coupled human-water system models can provide insights into dominant controls of the trajectory of their co-evolution in a given system, and can also be used to interpret patterns of co-evolution of such coupled systems in different places across gradients of climatic, socio-economic and socio-cultural conditions, and in this way to help develop generalizable understanding. © 2014 Author(s)

    CELT site testing program

    Get PDF
    The California Extremely Large Telescope, CELT, is a proposed 30-m telescope. Choosing the best possible site for CELT is essential in order to extract the best science from the observations and to reduce the complexity of the telescope. Site selection is therefore currently one of the most critical pacing items of the CELT project. In this paper, we first present selected results from a survey of the atmospheric transparency at optical and infrared wavelengths over the southwestern USA and northern Mexico using satellite data. Results of a similar study of South America have been reported elsewhere. These studies will serve as the pre-selection criterion of the sites at which we will perform on-site testing. We then describe the current status of on-site turbulence evaluation efforts and the future plans of the CELT site testing program

    Thirty Meter Telescope Site Testing I: Overview

    Get PDF
    As part of the conceptual and preliminary design processes of the Thirty Meter Telescope (TMT), the TMT site testing team has spent the last five years measuring the atmospheric properties of five candidate mountains in North and South America with an unprecedented array of instrumentation. The site testing period was preceded by several years of analyses selecting the five candidates, Cerros Tolar, Armazones and Tolonchar in northern Chile; San Pedro Martir in Baja California, Mexico and the 13 North (13N) site on Mauna Kea, Hawaii. Site testing was concluded by the selection of two remaining sites for further consideration, Armazones and Mauna Kea 13N. It showed that all five candidates are excellent sites for an extremely large astronomical observatory and that none of the sites stands out as the obvious and only logical choice based on its combined properties. This is the first article in a series discussing the TMT site testing project.Comment: Accepted for publication in PASP, April 2009 issu
    • …
    corecore