15 research outputs found
Impulsive phase solar flare X-ray polarimetry
The pioneering observational work in solar flare X-ray polarimetry was done in a series of satellite experiments by Tindo and his collaborators in the Soviet Union; initial results showed high levels of polarization in X-ray flares (up to 40%), although of rather low statistical significance, and these were generally interpreted as evidence for strong beaming of suprathermal electrons in the flare energy release process. However, the results of the polarimeter flown by the Columbia Astrophysics Laboratory as part of the STS-3 payload on the Space Shuttle by contrast showed very low levels of polarization. The largest value (observed during the impulsive phase of a single event) was 3.4% + or - 2.2%. At the same time but independent of the observational work, Leach and Petrosian (1983) showed that the high levels of polarization in the Tindo results were difficult to understand theoretically, since the electron beam is isotropized on an energy loss timescale. A subsequent comparison by Leach, Emslie, and Petrosian (1985) of the impulsive phase STS-3 result and the above theoretical treatment shows that the former is consistent with several current models and that a factor of approximately 3 improvement in sensitivity is needed to distinguish properly among the possibilities
Comparison of measurements of the outer scale of turbulence by three different techniques
We have made simultaneous and nearly simultaneous measurements of L0, the outer scale of turbulence, at the Palomar Observatory by using three techniques: angle-of-arrival covariance measurements with the Generalized Seeing Monitor (GSM), differential-image-motion measurements with the adaptive-optics system on the Hale 5-m telescope, and fringe speed measurements with the Palomar Testbed Interferometer (PTI). The three techniques give consistent results, an outer scale of approximately 10-20 m, despite the fact that the spatial scales of the three instruments vary from 1 m for the GSM to 100 m for the PTI
CELT site testing program
The California Extremely Large Telescope, CELT, is a proposed 30-m telescope. Choosing the best possible site for CELT is essential in order to extract the best science from the observations and to reduce the complexity of the telescope. Site selection is therefore currently one of the most critical pacing items of the CELT project. In this paper, we first present selected results from a survey of the atmospheric transparency at optical and infrared wavelengths over the southwestern USA and northern Mexico using satellite data. Results of a similar study of South America have been reported elsewhere. These studies will serve as the pre-selection criterion of the sites at which we will perform on-site testing. We then describe the current status of on-site turbulence evaluation efforts and the future plans of the CELT site testing program
CELT site testing program
The California Extremely Large Telescope, CELT, is a proposed 30-m telescope. Choosing the best possible site for CELT is essential in order to extract the best science from the observations and to reduce the complexity of the telescope. Site selection is therefore currently one of the most critical pacing items of the CELT project. In this paper, we first present selected results from a survey of the atmospheric transparency at optical and infrared wavelengths over the southwestern USA and northern Mexico using satellite data. Results of a similar study of South America have been reported elsewhere. These studies will serve as the pre-selection criterion of the sites at which we will perform on-site testing. We then describe the current status of on-site turbulence evaluation efforts and the future plans of the CELT site testing program
Coronagraph design for an extreme adaptive optics system with spatially filtered wavefront sensing on segmented telescopes
High dynamic range coronagraphy targeted at discovering planets around nearby stars is often associated with monolithic, unobstructed aperture space telescopes. With the advent of extreme adaptive optics (ExAO) systems with thousands of sensing and correcting channels, the benefits of placing a near-infrared coronagraph on a large segmented mirror telescope become scientifically interesting. This is because increased aperture size produces a tremendous gain in achievable contrast at the same angular distance from a point source at Strehl ratios in excess of 90\% (and at lower Strehl ratios on future giant telescopes such as the Thirty Meter Telescope). We outline some of the design issues facing such a coronagraph, and model a band-limited coronagraph on an aperture with a Keck-like pupil. We examine the purely diffractive challenges facing the eXtreme AO Planetary Imager (XAOPI) given the Keck pupil geometry, notably its inter-segment gap spacing of 6~mm. Classical Lyot coronagraphs, with hard-edged occulting stops, are not efficient enough at suppressing diffracted light, given XAOPI's scientific goal of imaging a young Jupiter at a separation as close as 0.15 arcseconds (4λD at H on Keck) from its parent star. With a 4000 channel ExAO system using an anti-aliased spatially-filtered wavefront sensor planned for XAOPI, we wish to keep diffracted light due to coronagraphic design at least as low as the noise floor set by AO system limitations. We study the band-limited Lyot coronagraph (BLC) as a baseline design instead of the classical design because of its efficient light suppression, as well as its analytical simplicity. We also develop ways of investigating tolerancing coronagraphic mask fabrication by utilizing the BLC design's mathematical tractability
Coronagraph design for an extreme adaptive optics system with spatially filtered wavefront sensing on segmented telescopes
High dynamic range coronagraphy targeted at discovering planets around nearby stars is often associated with monolithic, unobstructed aperture space telescopes. With the advent of extreme adaptive optics (ExAO) systems with thousands of sensing and correcting channels, the benefits of placing a near-infrared coronagraph on a large segmented mirror telescope become scientifically interesting. This is because increased aperture size produces a tremendous gain in achievable contrast at the same angular distance from a point source at Strehl ratios in excess of 90\% (and at lower Strehl ratios on future giant telescopes such as the Thirty Meter Telescope). We outline some of the design issues facing such a coronagraph, and model a band-limited coronagraph on an aperture with a Keck-like pupil. We examine the purely diffractive challenges facing the eXtreme AO Planetary Imager (XAOPI) given the Keck pupil geometry, notably its inter-segment gap spacing of 6~mm. Classical Lyot coronagraphs, with hard-edged occulting stops, are not efficient enough at suppressing diffracted light, given XAOPI's scientific goal of imaging a young Jupiter at a separation as close as 0.15 arcseconds (4λD at H on Keck) from its parent star. With a 4000 channel ExAO system using an anti-aliased spatially-filtered wavefront sensor planned for XAOPI, we wish to keep diffracted light due to coronagraphic design at least as low as the noise floor set by AO system limitations. We study the band-limited Lyot coronagraph (BLC) as a baseline design instead of the classical design because of its efficient light suppression, as well as its analytical simplicity. We also develop ways of investigating tolerancing coronagraphic mask fabrication by utilizing the BLC design's mathematical tractability
In Support of a Patient-Driven Initiative and Petition to Lower the High Price of Cancer Drugs
Comment in
Lowering the High Cost of Cancer Drugs--III. [Mayo Clin Proc. 2016]
Lowering the High Cost of Cancer Drugs--I. [Mayo Clin Proc. 2016]
Lowering the High Cost of Cancer Drugs--IV. [Mayo Clin Proc. 2016]
In Reply--Lowering the High Cost of Cancer Drugs. [Mayo Clin Proc. 2016]
US oncologists call for government regulation to curb drug price rises. [BMJ. 2015
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
Recommended from our members