14 research outputs found

    Shear failure of reinforced concrete beams

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX188662 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Bond strength of reinforcement in concrete affected by alkali silica reaction

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:3425.926(TRRL-CR--141) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Bond Response in Structural Concrete with Corroded Steel Bars. Experimental Results

    No full text
    Trabajo presentado en el Joint fib-RILEM Workshop Modelling of Corroding Concrete Structures, celebrado en Madrid (España), los días 22 y 23 de noviembre de 2010The growing interest in upgrading existing reinforced concrete structures or extending their service life, and in ensuring greater durability in new designs, has led to a need for resistance models that take deterioration processes into account to verify structural safety. Bond activation between reinforcing steel and concrete is of cardinal importance in this context. A number of experimental studies have been conducted in recent years on bond failure, which normally leads to brittle behaviour. The findings have diverged rather widely, however, due primarily to differing test conditions. The present paper presents an experimental programme for eccentric pull-out tests in which specimens were subjected to both accelerated and natural corrosion in an attempt to surmount these inconsistencies. It also introduces an embedded fibre-optic sensing system with corrosion-resistant fibre Bragg grating sensors and discusses some of the findings.Peer reviewe

    Reflectivity and PDE of VUV4 Hamamatsu SiPMs in liquid xenon

    No full text
    © 2020 IOP Publishing Ltd and Sissa Medialab. Understanding reflective properties of materials and photodetection efficiency (PDE) of photodetectors is important for optimizing energy resolution and sensitivity of the next generation neutrinoless double beta decay, direct detection dark matter, and neutrino oscillation experiments that will use noble liquid gases, such as nEXO, DARWIN, DarkSide-20k, and DUNE . Little information is currently available about reflectivity and PDE in liquid noble gases, because such measurements are difficult to conduct in a cryogenic environment and at short enough wavelengths. Here we report a measurement of specular reflectivity and relative PDE of Hamamatsu VUV4 silicon photomultipliers (SiPMs) with 50 μm micro-cells conducted with xenon scintillation light (∼175 nm) in liquid xenon. The specular reflectivity at 15ˆ incidence of three samples of VUV4 SiPMs is found to be 30.4±1.4%, 28.6±1.3%, and 28.0±1.3%, respectively. The PDE at normal incidence differs by ±8% (standard deviation) among the three devices. The angular dependence of the reflectivity and PDE was also measured for one of the SiPMs. Both the reflectivity and PDE decrease as the angle of incidence increases. This is the first measurement of an angular dependence of PDE and reflectivity of a SiPM in liquid xenon11Nsciescopu

    Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode

    No full text
    © 2020 Published by Elsevier B.V. Measurements of electron drift properties in liquid and gaseous xenon are reported. The electrons are generated by the photoelectric effect in a semi-transparent gold photocathode driven in transmission mode with a pulsed ultraviolet laser. The charges drift and diffuse in a small chamber at various electric fields and a fixed drift distance of 2.0 cm. At an electric field of 0.5 kV/cm, the measured drift velocities and corresponding temperature coefficients respectively are 1.97±0.04mm∕μs and (−0.69±0.05)%/K for liquid xenon, and 1.42±0.03mm∕μs and (+0.11±0.01)%/K for gaseous xenon at 1.5 bar. In addition, we measure longitudinal diffusion coefficients of 25.7±4.6 cm2/s and 149±23 cm2/s, for liquid and gas, respectively. The quantum efficiency of the gold photocathode is studied at the photon energy of 4.73 eV in liquid and gaseous xenon, and vacuum. These charge transport properties and the behavior of photocathodes in a xenon environment are important in designing and calibrating future large scale noble liquid detectors11sci

    Neutrinoless Double Beta Decay

    No full text
    This White Paper, prepared for the Fundamental Symmetries, Neutrons, and Neutrinos Town Meeting related to the 2023 Nuclear Physics Long Range Plan, makes the case for double beta decay as a critical component of the future nuclear physics program. The major experimental collaborations and many theorists have endorsed this white paper

    Neutrinoless Double Beta Decay

    No full text
    This White Paper, prepared for the Fundamental Symmetries, Neutrons, and Neutrinos Town Meeting related to the 2023 Nuclear Physics Long Range Plan, makes the case for double beta decay as a critical component of the future nuclear physics program. The major experimental collaborations and many theorists have endorsed this white paper

    Neutrinoless Double Beta Decay

    No full text
    International audienceThis White Paper, prepared for the Fundamental Symmetries, Neutrons, and Neutrinos Town Meeting related to the 2023 Nuclear Physics Long Range Plan, makes the case for double beta decay as a critical component of the future nuclear physics program. The major experimental collaborations and many theorists have endorsed this white paper

    Neutrinoless Double Beta Decay

    No full text
    This White Paper, prepared for the Fundamental Symmetries, Neutrons, and Neutrinos Town Meeting related to the 2023 Nuclear Physics Long Range Plan, makes the case for double beta decay as a critical component of the future nuclear physics program. The major experimental collaborations and many theorists have endorsed this white paper
    corecore