16,448 research outputs found

    Projected Density Matrix Embedding Theory with Applications to the Two-Dimensional Hubbard Model

    Get PDF
    Density matrix embedding theory (DMET) is a quantum embedding theory for strongly correlated systems. From a computational perspective, one bottleneck in DMET is the optimization of the correlation potential to achieve self-consistency, especially for heterogeneous systems of large size. We propose a new method, called projected density matrix embedding theory (p-DMET), which achieves self-consistency without needing to optimize a correlation potential. We demonstrate the performance of p-DMET on the two-dimensional Hubbard model.Comment: 25 pages, 8 figure

    Guangzhou Buyers Preference for Premium Hawaiian Grown Product Gift Baskets

    Get PDF
    Guangzhou buyers' preference for premium Hawaiian grown product gift baskets with conjoint analysis was examined. Relative importance of three gift basket attributes: container type, products origin, and price were examined. Expenditure equivalent index to evaluate how much more each of the gift basket attributes is worth to the buyer was estimated. Main conclusions are: products have to be 'made in Hawaii' to receive the premium price; business buyers are generally less willing to pay a high price; and individual buyers are more willing to pay the higher priced Koa gift basket.Chinese survey data, conjoint analysis, buyer preference, Hawaii gift baskets, Demand and Price Analysis,

    GPER-induced signaling is essential for the survival of breast cancer stem cells.

    Get PDF
    G protein-coupled estrogen receptor-1 (GPER), a member of the G protein-coupled receptor (GPCR) superfamily, mediates estrogen-induced proliferation of normal and malignant breast epithelial cells. However, its role in breast cancer stem cells (BCSCs) remains unclear. Here we showed greater expression of GPER in BCSCs than non-BCSCs of three patient-derived xenografts of ER- /PR+ breast cancers. GPER silencing reduced stemness features of BCSCs as reflected by reduced mammosphere forming capacity in vitro, and tumor growth in vivo with decreased BCSC populations. Comparative phosphoproteomics revealed greater GPER-mediated PKA/BAD signaling in BCSCs. Activation of GPER by its ligands, including tamoxifen (TMX), induced phosphorylation of PKA and BAD-Ser118 to sustain BCSC characteristics. Transfection with a dominant-negative mutant BAD (Ser118Ala) led to reduced cell survival. Taken together, GPER and its downstream signaling play a key role in maintaining the stemness of BCSCs, suggesting that GPER is a potential therapeutic target for eradicating BCSCs

    Effective conductivity of composites of graded spherical particles

    Full text link
    We have employed the first-principles approach to compute the effective response of composites of graded spherical particles of arbitrary conductivity profiles. We solve the boundary-value problem for the polarizability of the graded particles and obtain the dipole moment as well as the multipole moments. We provide a rigorous proof of an {\em ad hoc} approximate method based on the differential effective multipole moment approximation (DEMMA) in which the differential effective dipole approximation (DEDA) is a special case. The method will be applied to an exactly solvable graded profile. We show that DEDA and DEMMA are indeed exact for graded spherical particles.Comment: submitted for publication

    Animal models for the study of primary and secondary hypertension in humans.

    Get PDF
    This is the final version of the article. It first appeared from Spandidos Publications via http://dx.doi.org/10.3892/br.2016.784Hypertension is a significant cause of morbidity and mortality worldwide. It is defined as systolic and diastolic blood pressures (SBP/DBP) >140 and 90 mmHg, respectively. Individuals with an SBP between 120 and 139, or DBP between 80 and 89 mmHg, are said to exhibit pre-hypertension. Hypertension can have primary or secondary causes. Primary or essential hypertension is a multifactorial disease caused by interacting environmental and polygenic factors. Secondary causes are renovascular hypertension, renal disease, endocrine disorders and other medical conditions. The aim of the present review article was to examine the different animal models that have been generated for studying the molecular and physiological mechanisms underlying hypertension. Their advantages, disadvantages and limitations will be discussed.Biotechnology and Biological Sciences Research Council (Doctoral Training Award), Economic and Social Research Counci

    Implications of regional surface ozone increases on visibility degradation in southeast China

    Get PDF
    Long-term visibility (1968–2010) and air pollutant (1984–2010) data records in Hong Kong reveal that the occurrence of reduced visibility (RV, defined as the percentage of hours per month with visibility below 8 km in the absence of rain, fog, mist or relative humidity above 95%) in southeast China has increased significantly in the last four decades. The most pronounced rate of increase was observed after 1990 (nine times higher than that before 1990), when notable increases in surface ozone (O3) levels were simultaneously observed (1.06 µg m−3 per yr). The greatest increases in RV, and in O3, NO2 and SO2 concentrations are coincident in the autumn (1.47, 0.20 and 0.45 µg m−3 per yr respectively), when southeast China is strongly influenced by regional O3 formation and accumulation due to continental outflow of pollution from the east China coast under favourable meteorological conditions. Multiple regression revealed that the RV percentage correlated well (p<0.05) with NO2 and NO x in the 1980s, and with NO2, SO2 and O3 after the 1990s, suggesting that there have been changes in the predominant factors causing visibility degradation. In order to elucidate the reasons for these changes, the results were integrated with data from previous research. Possible impacts of elevated O3 on secondary particle formation and their effects on visibility degradation and aerosol radiative forcing in an oxidant-enhanced southeast China are highlighted. Other factors potentially leading to visibility degradation, such as ship emissions and biomass burning, are also discussed

    A targeted gene panel that covers coding, non-coding and short tandem repeat regions improves the diagnosis of patients with neurodegenerative diseases

    Get PDF
    Genetic testing for neurodegenerative diseases (NDs) is highly challenging because of genetic heterogeneity and overlapping manifestations. Targeted-gene panels (TGPs), coupled with next-generation sequencing (NGS), can facilitate the profiling of a large repertoire of ND-related genes. Due to the technical limitations inherent in NGS and TGPs, short tandem repeat (STR) variations are often ignored. However, STR expansions are known to cause such NDs as Huntington\u27s disease and spinocerebellar ataxias type 3 (SCA3). Here, we studied the clinical utility of a custom-made TGP that targets 199 NDs and 311 ND-associated genes on 118 undiagnosed patients. At least one known or likely pathogenic variation was found in 54 patients; 27 patients demonstrated clinical profiles that matched the variants; and 16 patients whose original diagnosis were refined. A high concordance of variant calling were observed when comparing the results from TGP and whole-exome sequencing of four patients. Our in-house STR detection algorithm has reached a specificity of 0.88 and a sensitivity of 0.82 in our SCA3 cohort. This study also uncovered a trove of novel and recurrent variants that may enrich the repertoire of ND-related genetic markers. We propose that a combined comprehensive TGPs-bioinformatics pipeline can improve the clinical diagnosis of NDs
    corecore