3,230 research outputs found

    Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests

    Get PDF
    We evaluate Vickers hardness and true instrumented indentation test (IIT) hardness of 24 metals over a wide range of mechanical properties using just IIT parameters by taking into account the real contact morphology beneath the Vickers indenter. Correlating the conventional Vickers hardness, indentation contact morphology, and IIT parameters for the 24 metals reveals relationships between contact depths and apparent material properties. We report the conventional Vickers and true IIT hardnesses measured only from IIT contact depths; these agree well with directly measured hardnesses within Ā±6% for Vickers hardness and Ā±10% for true IIT hardness

    A comprehensive study of vector leptoquark with U(1)B3āˆ’L2U(1)_{B_3-L_2} on the BB-meson and Muon g-2 anomalies

    Full text link
    Recently reported anomalies in various BB meson decays and also in the anomalous magnetic moment of muon (gāˆ’2)Ī¼(g-2)_\mu motivate us to consider a particular extension of the standard model incorporating new interactions in lepton and quark sectors simultaneously. Our minimal choice would be leptoquark. In particular, we take vector leptoquark (U1U_1) and comprehensively study all related observables including ${(g-2)_{\mu}},\ R_{K^{(*)}},\ R_{D^{(*)}},, B \to (K) \ell \ell' where where \ell\ell'arevariouscombinationsof are various combinations of \muand and \tau,andalsoleptonflavorviolationinthe, and also lepton flavor violation in the \taudecays.Wefindthatahybridscenariowithadditional decays. We find that a hybrid scenario with additional U(1)_{B_3-L_2}$ gauge boson provides a common explanation of all these anomalies.Comment: 16 pages, 3 figure

    Short-Term Effects of Ginkgo biloba Extract on Peripapillary Retinal Blood Flow in Normal Tension Glaucoma

    Get PDF
    PURPOSE: Based on the vascular theory of glaucoma pathogenesis, we wanted to evaluate the effect of Ginkgo biloba extract (GBE) on peripapillary blood flow in patients with normal tension glaucoma (NTG). METHODS: Thirty patients with NTG were randomly placed in the GBE-treated or control groups. The GBE-treated group received 80 mg GBE orally, twice a day for four weeks, and the control group received a placebo twice a day for four weeks. Complete ocular examinations including visual field, Heidelberg retina flowmeter, and systemic examinations were performed on the first study day and on the day treatment was completed. RESULTS: After GBE treatment, the mean blood flow, volume, and velocity increased at almost all points, and there was a statistically significant increase in blood flow at almost all points, in comparison to the placebo. Blood volume significantly increased only in the superior nasal and superior temporal neuroretinal rim areas. GBE also significantly increased blood velocity in areas of the inferior temporal neuroretinal rim and superior temporal peripapillary area. CONCLUSIONS: GBE administration appears to have desirable effect on ocular blood flow in NTG patients.ope

    Observation of Young's Double-Slit Interference with the Three-Photon N00N State

    Full text link
    Spatial interference of quantum mechanical particles exhibits a fundamental feature of quantum mechanics. A two-mode entangled state of N particles known as N00N state can give rise to non-classical interference. We report the first experimental observation of a three-photon N00N state exhibiting Young's double-slit type spatial quantum interference. Compared to a single-photon state, the three-photon entangled state generates interference fringes that are three times denser. Moreover, its interference visibility of 0.49Ā±0.090.49 \pm 0.09 is well above the limit of 0.1 for spatial super-resolution of classical origin. The demonstration of spatial quantum interference by a N00N state composed of more than two photons represents an important step towards applying quantum entanglement to technologies such as lithography and imaging

    Successful Treatment of Stereotactic Body Radiation Therapy Combined with Transarterial Chemolipiodolization for Hepatocellular Carcinoma with Biliary Obstruction

    Get PDF
    Conventional radiation therapy (RT) is a widely recognized treatment for hepatocellular carcinoma (HCC). However, conventional RT plays only a limited role in HCC treatment because of its low efficacy and the low tolerance of the liver for this modality. Stereotactic body radiation therapy (SBRT) was recently developed and represents the most advanced radiation therapy technique currently available. It can deliver a high dose in a short time to well-defined hepatic tumors, with rapid dose fall-off gradients. We believe that SBRT with transarterial chemolipiodolization (TACL) may prove promising as a combined treatment modality for HCC due to its precision and relative safety. Here we present a case of successful treatment of advanced HCC with obstructive jaundice using this combined modality

    In-rich InGaN/GaN quantum wells grown by metal-organic chemical vapor deposition

    Get PDF
    Growth mechanism of In-rich InGaN/GaN quantum wells (QWs) was investigated. First, we examined the initial stage of InN growth on GaN template considering strain-relieving mechanisms such as defect generation, islanding, and alloy formation at 730 degrees C. It was found that, instead of formation of InN layer, defective In-rich InGaN layer with thickness fluctuations was formed to relieve large lattice mismatch over 10% between InN and GaN. By introducing growth interruption (GI) before GaN capping at the same temperature, however, atomically flat InGaN/GaN interfaces were observed, and the quality of In-rich InGaN layer was greatly improved. We found that decomposition and mass transport processes during GI in InGaN layer are responsible for this phenomenon. There exists severe decomposition in InGaN layer during GI, and a 1-nm-thick InGaN layer remained after GI due to stronger bond strength near the InGaN/GaN interface. It was observed that the mass transport processes actively occurred during GI in InGaN layer above 730 degrees C so that defect annihilation in InGaN layer was greatly enhanced. Finally, based on these experimental results, we propose the growth mechanism of In-rich InGaN/GaN QWs using GI.open9
    • ā€¦
    corecore