61,551 research outputs found

    On site challenges for the construction of 16-storey condominium: as observed by a young civil engineering technologist

    Get PDF
    The difference between an engineer and an engineering technologist is that, an engineer would mainly focus and produce structural designs based on engineering calculations, while the job of an engineering technologist is to execute the design in the real working environment by adopting flexible and critical technical ideas on-site. The challenges can be divided into two categories, namely design challenges faced by an engineer and the construction challenges faced by an engineering technologist. Thus, the job scope of an engineering technologist is relatively wider when compared to that of an engineer, as the engineering technologist would be dealing with the consultant, contractors and suppliers on site, while handling the in situ construction challenges. This requires basic understanding of engineering principles and technology, critical thinking and problem-solving skills, modern tools competency in software applications, designs and construction calculations, as well as communication and leadership skills all rolled into one. I have recorded my experience as a junior civil engineering technologist engaged in the construction works of a 16-storey condominium at Langkawi, Kedah. Included in the descriptions are in situ technical problems encountered, potentially unsafe working conditions, foundations, scheduling and housekeeping on site, among others. I hope that the information shared in this entry would make a good introduction and induction for juniors entering the work site, where my personal undertakings could serve as a guide and reminder for them

    Adsorbate Electric Fields on a Cryogenic Atom Chip

    Full text link
    We investigate the behaviour of electric fields originating from adsorbates deposited on a cryogenic atom chip as it is cooled from room temperature to cryogenic temperature. Using Rydberg electromagnetically induced transparency we measure the field strength versus distance from a 1 mm square of YBCO patterned onto a YSZ chip substrate. We find a localized and stable dipole field at room temperature and attribute it to a saturated layer of chemically adsorbed rubidium atoms on the YBCO. As the chip is cooled towards 83 K we observe a change in sign of the electric field as well as a transition from a localized to a delocalized dipole density. We relate these changes to the onset of physisorption on the chip surface when the van der Waals attraction overcomes the thermal desorption mechanisms. Our findings suggest that, through careful selection of substrate materials, it may be possible to reduce the electric fields caused by atomic adsorption on chips, opening up experiments to controlled Rydberg-surface coupling schemes.Comment: 5 pages, 4 figure

    Cosmic Microwave Background constraints of decaying dark matter particle properties

    Full text link
    If a component of cosmological dark matter is made up of massive particles - such as sterile neutrinos - that decay with cosmological lifetime to emit photons, the reionization history of the universe would be affected, and cosmic microwave background anisotropies can be used to constrain such a decaying particle model of dark matter. The optical depth depends rather sensitively on the decaying dark matter particle mass m_{dm}, lifetime tau_{dm}, and the mass fraction of cold dark matter f that they account for in this model. Assuming that there are no other sources of reionization and using the WMAP 7-year data, we find that 250 eV < m_{dm} < 1 MeV, whereas 2.23*10^3 yr < tau_{dm} < 1.23*10^18 yr. The best fit values for m_{dm} and tau_{dm}/f are 17.3 keV and 2.03*10^16 yr respectively.Comment: 17 pages, 3 figure

    The effects of man-marking on work intensity in small-sided soccer games

    Get PDF
    The aim of this study was to examine the effect of manipulating defensive rules: with and without man-marking (MM and NMM) on exercise intensity in 3 vs. 3 small-sided games (SSGs). Twelve adolescent soccer players (age: 16.2 ± 0.7 years; body mass: 55.7 ± 6.4 kg; body height: 1.70 ± 0.07 m) participated in this repeated measures study. Each participant performed in four different SSGs formats: 3 vs. 3 MM with and without goals and 3 vs. 3 NMM with and without goals. Each SSG lasted 3 x 4 minutes interspersed with 4 minutes passive recovery. The percentage heart rate reserve (%HRreserve) was recorded continuously during SSG and session-rating of perceived exertion (session-RPE) after the SSG. MANOVA showed that defensive rule had significant effects on intensity (F = 5.37, p < 0.01). Specifically, MM during SSG induced significantly higher %HRreserve compared to NMM (Goal: 80.5 vs. 75.7%; No goal: 80.5 vs. 76.1%; p < 0.05, effect size = 0.91-1.06), irrespective of the presence or absence of goals. However, only MM with the presence of goals induced significant higher session-RPE compared to NMM (7.1 vs. 6.0; p < 0.05, effect size = 1.36), whereas no difference in session-RPE was observed between MM and NMM (7.4 vs. 6.9; p > 0.05, effect size = 0.63) when no goals were used. Higher intra-class reliability and lower coefficient of variation values were also reported in MM as compared to NMM. This study in youth soccer players shows there is ~4.5% increase in heart rate response by using the man-marking in 3 vs. 3 SSG thus the intensity of SSG can be significantly increased when using man-marking tactics

    Three-dimensional finite element analysis for high velocity impact

    Get PDF
    A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model

    Entropy for Asymptotically AdS_3 Black Holes

    Full text link
    We propose that Strominger's method to derive the BTZ black hole entropy is in fact applicable to other asymptotically AdS_3 black holes and gives the correct functional form of entropies. We discuss various solutions in the Einstein-Maxwell theory, dilaton gravity, Einstein-scalar theories, and Einstein-Maxwell-dilaton theory. In some cases, solutions approach AdS_3 asymptotically, but their entropies do not have the form of Cardy's formula. However, it turns out that they are actually not "asymptotically AdS3AdS_3" solutions. On the other hand, for truly asymptotically AdS_3 solutions, their entropies have the form of Cardy's formula. In this sense, all known solutions are consistent with our proposal.Comment: 21 pages, LaTeX; v2: added discussion for section 3.

    Modifications of the BTZ black hole by a dilaton/scalar

    Full text link
    We investigate some modifications of the static BTZ black hole solution due to a chosen asymptotically constant dilaton/scalar. New classes of static black hole solutions are obtained. One of the solutions contains the Martinez-Zanelli conformal black hole solution as a special case. Using quasilocal formalism, we calculate their mass for a finite spatial region that contains the black hole. Their temperatures are also computed. Finally, using some of the curvature singularities as examples, we investigate whether a quantum particle behaves singularly or not.Comment: 18 pages, Latex, in press in Phys. Rev.

    Measurement of B(D^0 → K^-π^+) Using Partial Reconstruction of B̅ → D^(*+)Xℓ^-ν̅

    Get PDF
    We present a measurement of the absolute branching fraction for D^0→K^-π^+ using the reconstruction of the decay chain B̅ →D^(*+)Xℓ^-ν̅ , D^(*+)→D^0π^+ where only the lepton and the low-momentum pion from the D^(*+) are detected. With data collected by the CLEO II detector at the Cornell Electron Storage Ring, we have determined B(D^0→K^-π^+) = [3.81±0.15(stat)±0.16(syst)]%

    CMB Constraint on Radion Evolution in the Brane World Scenario

    Full text link
    In many versions of brane model, the modulus field of extra dimensions, the radion, could have cosmological evolution, which induces variation of the Higgs vacuum expectation value, , resulting in cosmological variation of the electron mass $m_e$. The formation of Cosmic Microwave Background (CMB) anisotropies is thus affected, causing changes both in the peaks positions and amplitudes in the CMB power spectra. Using the three-year Wilkinson Microwave Anisotropies Probe (WMAP) CMB data, with the Hubble parameter $H_0$ fixed to be the Hubble Space Telescope (HST) result 72 km s$^{-1}$ Mpc$^{-1}$, we obtain a constraint on $\rho$, the ratio of the value of at CMB recombination to its present value, to be [0.97, 1.02].Comment: 7 pages, 6 figures, minor changes of format to conform with PRD forma
    • …
    corecore