273 research outputs found

    On precessing flow in an oblate spheroid of arbitrary eccentricity

    Get PDF
    This is the author accepted manuscript. The final version is available from Cambridge University Press via the DOI in this record. Copyright © 2014 Cambridge University PressWe consider a homogeneous fluid of viscosity v confined within an oblate spheroidal cavity of arbitrary eccentricity E marked by the equatorial radius d and the polar radius d √1-E2 with 0<E<1. The spheroidal container rotates rapidly with an angular velocity Ω0 about its symmetry axis and precesses slowly with an angular velocity Ωp about an axis that is fixed in space. It is through both topographical and viscous effects that the spheroidal container and the viscous fluid are coupled together, driving precessing flow against viscous dissipation. The precessionally driven flow is characterized by three dimensionless parameters: the shape parameter E , the Ekman number Ek=v /(d2|Ω| 0 and the PoincarĂ© number Po=±|Ωp|/ |Ω0|. We derive a time-dependent asymptotic solution for the weakly precessing flow in the mantle frame of reference satisfying the no-slip boundary condition and valid for a spheroidal cavity of arbitrary eccentricity at Ekâ‰Ș1. No prior assumptions about the spatialoral structure of the precessing flow are made in the asymptotic analysis. We also carry out direct numerical simulation for both the weakly and the strongly precessing flow in the same frame of reference using a finite-element method that is particularly suitable for non-spherical geometry. A satisfactory agreement between the asymptotic solution and direct numerical simulation is achieved for sufficiently small Ekman and PoincarĂ© numbers. When the nonlinear effect is weak with |Po| â‰Ș 1, the precessing flow in an oblate spheroid is characterized by an azimuthally travelling wave without having a mean azimuthal flow. Stronger nonlinear effects with increasing |Po| produce a large-amplitude, time-independent mean azimuthal flow that is always westward in the mantle frame of reference. Implications of the precessionally driven flow for the westward motion observed in the Earth's fluid core are also discussed. © 2014 Cambridge University Press.Science & Technology Facilities Council (STFC)NERCHong Kong RGCNSFCChinese Academy of SciencesK.Z. is supported by UK STFC and NERC grants, K.H.C. is supported by Hong Kong RGC grant/700310 and X.L. is supported by NSFC/11133004 and Chinese Academy of Sciences under grant number KZZD-EW-01-3. The numerical computation is supported by Shanghai Supercomputer Cente

    A new particle swarm optimization algorithm for neural network optimization

    Get PDF
    This paper presents a new particle swarm optimization (PSO) algorithm for tuning parameters (weights) of neural networks. The new PSO algorithm is called fuzzy logic-based particle swarm optimization with cross-mutated operation (FPSOCM), where the fuzzy inference system is applied to determine the inertia weight of PSO and the control parameter of the proposed cross-mutated operation by using human knowledge. By introducing the fuzzy system, the value of the inertia weight becomes variable. The cross-mutated operation is effectively force the solution to escape the local optimum. Tuning parameters (weights) of neural networks is presented using the FPSOCM. Numerical example of neural network is given to illustrate that the performance of the FPSOCM is good for tuning the parameters (weights) of neural networks

    Genetic Algorithm based Fuzzy Multiple Regression for the Nocturnal Hypoglycaemia Detection

    Get PDF
    Low blood glucose (Hypoglycaemia) is dangerous and can result in unconsciousness, seizures and even death. It has a common and serious side effect of insulin therapy in patients with diabetes. We measure physiological parameters (heart rate, corrected QT interval of the electrocardiogram (ECG) signal, change of heart rate, and the change of corrected QT interval) continuously to provide detection of hypoglycaemic. Based on these physiological parameters, we have developed a genetic algorithm based multiple regression model to determine the presence of hypoglycaemic episodes. Genetic algorithm is used to determine the optimal parameters of the multiple regression. The overall data were organized into a training set (8 patients) and a testing set (another 8 patient) which are randomly selected. The clinical results show that the proposed algorithm can achieve predictions with good sensitivities and acceptable specificities

    On fluid flows in precessing spheres in the mantle frame of reference

    Get PDF
    Copyright © 2010 American Institute of PhysicsWe investigate, through both asymptotic and numerical analysis, precessionally driven flows of a homogeneous fluid confined in a spherical container that rotates rapidly with angular velocity Ω and precesses slowly with angular velocity Ωp about an axis that is fixed in space. The precessionally driven flows are primarily characterized by two dimensionless parameters: the Ekman number E providing the measure of relative importance between the viscous force and the Coriolis force, and the Poincaré number Po quantifying the strength of the Poincaré forcing. When E is small but fixed and |Po| is sufficiently small, we derive a time-dependent asymptotic solution for the weakly precessing flow that satisfies the nonslip boundary condition in the mantle frame of reference. No prior assumption about the spatial-temporal structure of the precessing flow is made in the asymptotic analysis. A solvability condition is derived to determine the spatial structure of the precessing flow, via a selection from a complete spectrum of spherical inertial modes in the mantle frame. The weakly precessing flow within the bulk of the fluid is characterized by an inertial wave moving retrogradely. Direct numerical simulation of the same problem in the same frame of reference shows a satisfactory agreement between the time-dependent asymptotic solution and the nonlinear numerical simulation for sufficiently small Poincaré numbers

    A Flexible Fuzzy Regression Method for Addressing Nonlinear Uncertainty on Aesthetic Quality Assessments

    Get PDF
    Development of new products or services requires knowledge and understanding of aesthetic qualities that correlate to perceptual pleasure. As it is not practical to develop a survey to assess aesthetic quality for all objective features of a new product or service, it is necessary to develop a model to predict aesthetic qualities. In this paper, a fuzzy regression method is proposed to predict aesthetic quality from a given set of objective features and to account for uncertainty in human assessment. The proposed method overcomes the shortcoming of statistical regression, which can predict only quality magnitudes but cannot predict quality uncertainty. The proposed method also attempts to improve traditional fuzzy regressions, which simulate a single characteristic with which the estimated uncertainty can only increase with the increasing magnitudes of objective features. The proposed fuzzy regression method uses genetic programming to develop nonlinear structures of the models, and model coefficients are determined by optimizing the fuzzy criteria. Hence, the developed model can be used to fit the nonlinearities of sample magnitudes and uncertainties. The effectiveness and the performance of the proposed method are evaluated by the case study of perceptual images, which are involved with different sampling natures and with different amounts of samples. This case study attempts to address different characteristics of human assessments. The outcomes demonstrate that more robust models can be developed by the proposed fuzzy regression method compared with the recently developed fuzzy regression methods, when the model characteristics and fuzzy criteria are taken into account

    An Evolutionary Variable Neighborhood Search for Selecting Combinational Gene Signatures in Predicting Chemo-Response of Osteosarcoma

    Get PDF
    In genomic studies of cancers, identification of genetic biomarkers from analyzing microarray chip that interrogate thousands of genes is important for diagnosis and therapeutics. However, the commonly used statistical significance analysis can only provide information of each single gene, thus neglecting the intrinsic interactions among genes. Therefore, methods aiming at combinational gene signatures are highly valuable. Supervised classification is an effective way to assess the function of a gene combination in differentiating various groups of samples. In this paper, an evolutionary variable neighborhood search (EVNS) that integrated the approaches of evolutionary algorithm and variable neighborhood search (VNS) is introduced.It consists of a population of solutions that evolution is performed by a variable neighborhood search operator, instead of the more usual reproduction operators, crossover and mutation used in evolutionary algorithms. It is an efficient search algorithm especially suitable for tremendous solution space. The proposed EVNS can simultaneously optimize the feature subset and the classifier through a common solution coding mechanism. This method was applied in searching the combinational gene signatures for predicting histologic response of chemotherapy on osteosarcoma patients, which is the most common malignant bone tumor in children. Cross-validation results show that EVNS outperforms the other existing approaches in classifying initial biopsy samples

    Diagnosis of hypoglycemic episodes using a neural network based rule discovery system

    Get PDF
    Hypoglycemia or low blood glucose is dangerous and can result in unconsciousness, seizures and even death for Type 1 diabetes mellitus (T1DM) patients. Based on the T1DM patients’ physiological parameters, corrected QT interval of the electrocardiogram (ECG) signal, change of heart rate, and the change of corrected QT interval, we have developed a neural network based rule discovery system with hybridizing the approaches of neural networks and genetic algorithm to identify the presences of hypoglycemic episodes for TIDM patients. The proposed neural network based rule discovery system is built and is validated by using the real T1DM patients’ data sets collected from Department of Health, Government of Western Australia. Experimental results show that the proposed neural network based rule discovery system can achieve more accurate results on both trained and unseen T1DM patients’ data sets compared with those developed based on the commonly used classification methods for medical diagnosis, statistical regression, fuzzy regression and genetic programming. Apart from the achievement of these better results, the proposed neural network based rule discovery system can provide explicit information in the form of production rules which compensate for the deficiency of traditional neural network method which do not provide a clear understanding of how they work in prediction as they are in an implicit black-box structure. This explicit information provided by the product rules can convince medical doctors to use the neural networks to perform diagnosis of hypoglycemia on T1DM patients

    A guided search genetic algorithm using mined rules for optimal affective product design

    Get PDF
    Affective design is an important aspect of new product development, especially for consumer products, to achieve a competitive edge in the marketplace. It can help companies to develop new products that can better satisfy the emotional needs of customers. However, product designers usually encounter difficulties in determining the optimal settings of the design attributes for affective design. In this article, a novel guided search genetic algorithm (GA) approach is proposed to determine the optimal design attribute settings for affective design. The optimization model formulated based on the proposed approach applied constraints and guided search operators, which were formulated based on mined rules, to guide the GA search and to achieve desirable solutions. A case study on the affective design of mobile phones was conducted to illustrate the proposed approach and validate its effectiveness. Validation tests were conducted, and the results show that the guided search GA approach outperforms the GA approach without the guided search strategy in terms of GA convergence and computational time. In addition, the guided search optimization model is capable of improving GA to generate good solutions for affective design

    Classification of hypoglycemic episodes for Type 1 diabetes mellitus based on neural networks

    Get PDF
    Hypoglycemia is dangerous for Type 1 diabetes mellitus (T1DM) patients. Based on the physiological parameters, we have developed a classification unit with hybridizing the approaches of neural networks and genetic algorithm to identify the presences of hypoglycemic episodes for TIDM patients. The proposed classification unit is built and is validated by using the real T1DM patients' data sets collected from Department of Health, Government of Western Australia. Experimental results show that the proposed neural network based classification unit can achieve more accurate results on both trained and unseen T1DM patients' data sets compared with those developed based on the commonly used classification methods for medical diagnosis including statistical regression, fuzzy regression and genetic programming
    • 

    corecore