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Abstract 

Affective design is an important aspect of new product development, especially for consumer 

products, to achieve a competitive edge in the marketplace. It can help companies develop new 

products that can better satisfy the emotional needs of customers. However, product designers 

usually encounter difficulties in determining the optimal settings of the design attributes for 

affective design. In this paper, a novel guided search genetic algorithm (GA) approach is 

proposed to determine the optimal design attribute settings for affective design. The 

optimisation model formulated based on the proposed approach applied constraints and guided 

search operators, which were formulated based on mined rules, to guide the GA search and to 

achieve desirable solutions. A case study on the affective design of mobile phones was 

conducted to illustrate the proposed approach and validate its effectiveness. Validation tests 

were conducted, and the results show that the guided search GA approach outperforms the GA 
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approach without the guided search strategy in terms of GA convergence and computational 

time. In addition, the guided search optimization model is capable of improving GA to generate 

good solutions for affective design. 

Keywords: Affective design, guided search genetic algorithms, new product 

development, customer satisfaction 

1. Introduction 

Manufacturers currently face a highly competitive environment as consumers become more 

demanding because of the availability of more choices in the market as a result of globalization. 

However, product technology has become more sophisticated and accessible, and this trend is 

gradually reducing the marginal value of adding new functions to products. Today, customers 

consider functionality, ease of use, and reliability as product requirements, such that the design 

for performance and the design for usability can no longer guarantee a competitive advantage 

(Liu, 2003). Aside from these tangible product aspects, customers also consider intangible and 

emotional aspects, such as metaphors, novelty, personality, aesthetics, and style of products 

(Crilly et al., 2004; Demirbilek and Sener, 2003). Design attributes, such as form and color, 

evoke the affective responses of customers to products, as well as attract them and influence 

their choices and preferences, such as loyalty and joy of use (Creusen and Schoormans, 2005; 

Noble and Kumar, 2008). The satisfaction of the emotional needs of customers is synonymous 

to the ‘feeling quality’ of the products (Lai et al., 2005a). The affective design involves 

activities that identify, measure, analyze, and understand the relationship between affective 

needs in the customer domain and perceptual design attributes in the design domain. The 

affective design provides decision support for design optimization, such that appealing products 

that satisfy the emotional needs of target customers can be developed successfully (Jiao et al., 

2006; Khalid and Helander, 2004). Therefore, affective design is important for customer-

oriented and market-driven product development because it helps increase customer satisfaction 
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and adds value to products, such as automobiles, furniture, cosmetic containers, and many other 

products used in daily life (Catalano, 2002; Nagamachi, 2002). 

Kansei Engineering, proposed by Nagamachi (1995), is a product development 

methodology of acquiring and transforming customer affection into design attribute settings 

with the use of quantitative methods. ‘Kansei’ is a Japanese word that means psychological 

feelings, sensations, and emotions. The framework of KE encompasses four tasks (Barnes and 

Lillford, 2007, 2009; Nagamachi, 2008; Schütte and Eklund, 2005): definition of the product 

domain, determination of the dimensions of customer affection, determination of design 

attributes and attribute options, and evaluation of relations between customer affection and 

design attributes. However, Kansei engineering is unable to determine the optimal design 

attribute settings for affective design. 

A number of studies have been conducted on affective design, and most of them focused 

on the relationships between affective responses and design attributes with the use of various 

techniques, such as logistic regression (Barone, 2007), association rule mining (Jiao, 2006), 

grey theory (Hsiao, 2002), artificial neural networks (Lin, 2008), and neural fuzzy networks 

(Park, 2004 and Kwong et al., 2009). However, only a few studies focused on determining the 

optimal design attribute settings for affective design. The main goal in affective design is to 

determine the optimal settings of design attributes for the affective aspects of products to 

achieve maximum customer satisfaction. Therefore, affective design can be transformed into a 

single-objective optimization problem if the optimization focuses on investigating the design 

utility for a particular customer affection or product image. Various optimisation techniques can 

be applied, such as linear programming and nonlinear programming (Mishra, et al., 2013). 

Aktar et al. (2009) employed linear and nonlinear programming to obtain the optimal design 

attribute settings for affective design. An alternative approach to design optimization is based 
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on heuristic algorithms, such as GAs and simulated annealing (Velasco, et al., 2012; Kaplan 

and Rabadi, 2013), which are stochastic and effective optimization techniques to search for 

near-optimal solutions for various problems of engineering design (Saridakis and Dentsoras, 

2008; Chakraborty et al., 2003). GAs in particular have been applied in various areas of product 

design, such as product planning (Jiao et al., 2007; D'Souza, 2003), interactive generative 

design (Kim and Cho, 2000; Yanagisawa and Fukuda, 2005), and optimization of affective 

design (Hsiao and Liu, 2004; Hsiao and Tsai, 2005; Jiao et al., 2008; Yang and Shieh, 2010). 

GAs are suitable to solve optimization problems for affective design because of three reasons 

(Jiao et al., 2008). First, discrete attributes are commonly used in affective design. Compared 

with traditional optimization techniques, GAs perform better in solving combinatorial 

optimization problems that involve discrete attributes (Jiao et al., 2007). Second, the 

optimization problems of affective design are different from many problems of engineering 

design in which optimal solutions exist. Third, GAs offer good compatibility with different 

models, whether these are statistical, rule based, or ‘black-box’ models (Saridakis and 

Dentsoras, 2008). 

In this paper, a novel guided search GA approach using mined rules is proposed to 

generate the optimal design attribute settings for affective design. The proposed optimization 

model applied constraints and guided search operators, which were formulated based on mined 

rules, to guide the GA search and to achieve desirable solutions. A case study on the affective 

design of mobile phones was conducted to illustrate the proposed approach and the 

development of the intelligent system, as well as to validate their effectiveness. Results show 

that the guided search GA approach outperforms the GA approach without the guided search 

strategy in terms of better solution quality and shorter computational time. 
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2. Optimal affective design problem 

The relationship between affective response and design attributes in affective design is given by 

the following: 

  1 2, ,...,k k Ny f x x x         (1) 

where ky  is the satisfaction value of affective dimension k, and jx  is the j-th design attribute of 

the product with j = 1,2, …N. 

Model (1) is commonly developed based on customer survey data. Various techniques 

such as statistical regression (Kuang and Jiang, 2008), neural networks (Chen et al., 2006), and 

neural-fuzzy networks (Kwong et al., 2009) have been attempted to develop the model. Product 

designers intend to determine the optimal design attribute settings of an affective design such 

that the sum or weighed sum of satisfaction values of various affective dimensions are 

maximized. The optimization problem can be expressed as follows: 

 
1

max :
M

k k
k

w y


        (2) 

s.t. 

 1 2, ,...,k k Ny f x x x

 

( , )a b

j j jx x x  

Where wk is the importance weight of the affective dimension k and ( , )a b

j jx x is the range 

of value setting of xj. 

 

3. Guided search genetic algorithms for affective design optimization 

A guided search GA approach is proposed to determine the optimal design attribute settings for 

affective design. The approximate rules mined from customer survey data are used to guide the 
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GA search for the optimal design attribute settings. First, ranges of the design attributes are 

specified onto the guided search GA, and a population of chromosomes is generated randomly 

with respect to the specified ranges. Apart from using the traditional genetic operations, such as 

crossover and mutation, to evolve the chromosomes, a guided search operation is developed 

based on the constraint rules to improve convergence speech and enhance the ability of the 

chromosomes to locate the global optimum. A fitness function embedded with the predictive 

model (1) and constraint rules are developed to evaluate the satisfaction of affective dimensions 

represented by the chromosomes. Figure 1 shows the architecture of the guided search GA-

based design optimization model for affective design. The detailed mechanisms of the guided 

search GA approach, including chromosome representation, crossover and mutation, fitness 

function, guided search operation, and ranking and selection of the next generation, are given in 

the following sections. 
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Figure 1 Architecture of the guided search GA-based optimization model. 

3.1 Chromosome representation 

A population of chromosomes is initialized randomly at the start of the evolutionary process, in 

which each chromosome is used to represent the categorical and quantitative design attributes 

of the product illustrated in Figure 2. In each chromosome, the genes represent the (P+Q) 

design attributes of which the product has P categorical design attributes (namely, Ai with 

i=1,2,…,P) and Q quantitative design attributes (namely, Aj with j=1+P, 2+P,…, P+Q). The 1-

st to the p-th genes represent Ai with i=1,2,…,P, and the (P+1)-th to the (P+Q)-th genes 

represent Aj with  j = 1, 2, …, Q. 

 

Figure 2 Combined chromosome structure for the design optimization process. 

 For the categorical design attribute, an integer-code genome is used to represent the 

selected categorical option within an attribute domain. The range of the integer-code gene is 

from 1 to Li, where the categorical design attribute Ai contains Li items with i=1,…,p. For 

quantitative attributes, a real-coded gene is applied to represent the continuous value, which is 

limited by the range of 
min max,j jv v   , where 

min

jv  and 
max

jv are the minimum and maximum values 

of Aj with j=(1+P),…, (P+Q). 
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3.2 Crossover and mutation 

Two different mechanisms for the crossover and mutation are used to reproduce the integer-

coded and real-coded genes that represent the categorical and quantitative attributes, 

respectively. Figure 3 shows that for the integer-coded genes, a two-point crossover is used to 

swap the genes of two parent chromosomes between two random points and reproduce child 

chromosomes. Figure 4 shows that mutation is used to introduce random values on some 

randomly selected genes. For real-coded genes, simulated binary crossover and polynomial 

mutation are used (Agrawal et al., 1995; Deb et al., 2002; Sivakumar, 2012). In polynomial 

mutation, a gene, xi, is randomly selected, and its mutated value, xi’, is given by the following 

formulation: 

  max min'i i i ix x v v     ,        (5) 

where max

iv  and min

iv  are the upper and lower bounds of xi, respectively, and   is the random 

variable given by the polynomial distribution formulated as 

  
1

12 1,                  if 0.5mn     ;       (6) 

  
1

11 2 1 ,         if 0.5mn         ;      (7)  

 is a mutation distribution index, and  is randomly generated between 0 and 1. 

 

Figure 3 Two-point crossover for both integer-coded and real-coded genes.  
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Figure 4 Mutation for integer-coded genes. 

 

3.3 Fitness function 

The fitness function adopted in this research is defined as follows.  

  max

1

( )
M

i k i k

k

Fit f w  


           (8) 

where  k if   is the predicted satisfaction value of the affective dimension k of the neural-

fuzzy model; max  is the maximum affective level based on the rating scale; wk is the 

importance weight of the  affective dimension k and and ∑ wk is equal to 1; and  ( )iFit   is the 

fitness value based on the chromosome i .  

With the fitness function, the genetic algorithm would search for the design attribute setting 

which yields the predicted satisfaction values of various affective dimensions closest to the 

maximum affective satisfaction value. Therefore, the fitness with a small value is better than 

that with a large value. However, the time of convergence may be too slow, and the global 

optimum may not be likely reached if the search of the optimal solution is solely based on the 

fitness function. Two performance measures, namely, violation  vio iN   and penalty 

 sum iPen  , are thus introduced to reduce the convergence time and increase the chance of 

searching the global optimum. 
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  vio iN   is defined as the number of negative rules that the design attribute setting 

represents by matching 
i  with the “IF” part of the negative rule. However, the affective 

response does not match the “THEN” part of the negative rule. The penalty value,  sum iPen  , 

is given by 

    
 

1

vio iN

sum i n i

n

Pen Pen


 


   ,      (9) 

           (10) 

where and  are the weight and confidence factor of rule , respectively,  is 

the affective response described in the “THEN” part of rule , and min  and max  are the 

minimum and maximum of the affective levels based on the rating scale, respectively. Based on 

the penalty function, the fitness of the chromosome is downgraded significantly when the 

consequences of the “IF” part and the “THEN” part do not match. As a result, the design 

attribute settings causing undesired affective responses are not considered in the optimization. 

 

3.4 Guided search operation 

A fraction of population in each generation is selected to perform the guided search operation, 

which intends to search for the process of locating the global optima. The number of 

chromosomes selected to perform the guided search operation is less than that selected to 

perform crossover and mutation; otherwise, population diversity is difficult to maintain. The 
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positive rules in the rule set are adopted for the guided search operators. The preferred design 

attribute values stated in the “IF” part of the positive rule are substituted into some of the genes. 

This process helps obtain a good and preferred solution within a short time. When a 

chromosome 
i  is selected to be performed with the guided search operation,  children c

g , 

with  is generated by shaking 
i  for  time. The values of some genes of 

i  

are replaced by the design attributes represented in the “IF” part of the rule. For the parts of 

categorical attributes, integer-code genes are shaken, as shown in Figure 4: 

 

Figure 4 Guided search operator for the integer-coded genes. 

For the parts of the quantitative attributes, the new value of the i-th gene ,

c

g ix  in c

g  is 

shaken as 

 max min min

,

c

g i i i ix v v v    ,       (11) 

where   donates a random number generated between [0, 1]. After all c

g  with 

 are reproduced, their fitness  c

gFit  , violation  c

vio gN  , and penalty 

 c

sum gPen   are determined. The best child best  among the children can be found by ranking 

them in ascending order according to their violation, penalty, and fitness value. i  is replaced 

with best , if  bestFit  <  iFit  . Otherwise, the substitution is withdrawn if 

 iFit  <  bestFit  . The pseudo-code of the guided search operation is shown below. 
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Randomly select one 𝜒𝑖  in the population as parent solution, 𝜒𝒑 

FOR g = 1 to 𝑁𝑔𝑠  // where 𝑁𝑔𝑠  is the number of GS operators formulated 

 Reproduce 𝜒𝒑 as child solution 𝜒𝒄,𝒈 using gth GS operator 

 Evaluate the fittest of objective function, 𝐹𝑖𝑡(𝜒𝒄,𝒈), for solution 𝜒𝒄,𝒈 

 IF solution 𝜒𝒄,𝒈 violates any constraints,   

  Find 𝑁𝑣𝑖𝑜�𝜒𝒄,𝒈  

  Calculate 𝑃𝑒𝑛𝑠𝑢𝑚  𝜒𝑖  

 END IF 

END FOR 

Rank all children based on smaller {𝑁𝑣𝑖𝑜�𝜒𝒄,𝒈 , 𝑃𝑒𝑛𝑠𝑢𝑚  𝜒𝑖 , 𝐹𝑖𝑡(𝜒𝒄,𝒈)} 

Choose child ranked first as the best child 𝜒𝑐
𝑏𝑒𝑠𝑡  

// compare the fittest of objective function between the best child and parent 

IF 𝐹𝑖𝑡(𝜒𝑐
𝑏𝑒𝑠𝑡 ) < 𝐹𝑖𝑡(𝜒𝒑), 

// return the best child if 𝜒𝑐
𝑏𝑒𝑠𝑡  is better than 𝜒𝒑 

 RETURN 𝜒𝑐
𝑏𝑒𝑠𝑡   

ELSE 

 RETURN 𝜒𝒑 

END IF 

  

 

3.5 Ranking and selection of the next generation 

The ranking processes involve the three measures, namely, Fit( ), , and , 

whereas the population is classified into two groups, the desirable and undesirable group. 

Candidate solutions are in the desirable group if they do not satisfy constraint violations, i.e., 

. They are ranked according to their fitness value Fit( ) when they are in the 
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desirable group. When they are in the undesirable group, they are ranked based on  and 

. For candidate solutions that violate any constraint , their priorities 

are based on parameters  and . For example, let and  be two different 

solution vectors.  dominates  if . If , the sum of 

the penalties of and  is compared, and  dominates  if . 

For each generation, the pool of chromosomes is formed by recombination of the current 

population (parents) and the reproduced children. Child chromosomes are generated until the 

pool size is equal to . The selection process is performed after the preparation of the 

pool of chromosomes. Binary tournament selection method is adopted for the guided search GA 

because this method is an effective selection operator of GA (Deb et al., 2002). Two solutions 

are randomly selected from the pool of chromosomes, and the better one is selected as the 

offspring of the next generation. The selection is repeated until the population size of the new 

generation reaches . 

Figure 6 shows the mechanisms of the guided search GA. 
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Figure 6 Flowchart of the guided search GA.
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4. A Case study on the optimal affective design for mobile phones 

A case study on the product form design for mobile phones is used to investigate the 

effectiveness of the proposed guided search GA for affective design. The case study mainly 

involves a survey and the implementation of the proposed approach for the affective design 

for mobile phones. The guided search GA was implemented with MATLAB software 

programming language. The survey was conducted using questionnaires. It involved 

customer affections on 32 mobile phone samples based on four product attributes: simplicity, 

uniqueness, high technology, and handiness. Figure 7 shows the front and side views of the 

32 mobile phone samples. Figure 8 shows that a total of 34 respondents filled out the 

questionnaires and indicated their feelings toward the product images of each sample on a 

five-point scale. 

 

Figure 7 The 32 mobile phone samples used in the case study. 
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Figure 8 Format of the questionnaire for each mobile phone. 

 

The morphological approach was adopted to define the design space of the product form 

for mobile phones. Depicting the design composition and possible design solutions with 

simple and graphical notations was feasible. Eight design parameters (A1 to A8) were defined 

to describe the product forms of the mobile phones, including top shape, bottom shape, 

function button shape, layout, length, width ratio, thickness, and border width. The first four 

design parameters are categorical, whereas the remaining four attributes are quantitative. The 

categorical attributes contain three to five options. Table 1 shows that the design attributes 

and their options are listed in a design table for the product form of the mobile phones. Based 
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on the design table, the design profile for each sample was identified, and the values of the 

design attributes can be measured. 

Table 1 Design table for the product form of the mobile phones 
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4.1 Implementation of the guided search GA 

The optimal settings of the design attributes for the affective design of mobile phones are 

determined through the development of a guided search GA optimization model, as shown in 

Figure 1. The neural-fuzzy model for modeling affective relationships, which was developed 

by the authors in their previous research (Kwong, 2009), was adopted as the predictive model. 

Based on multi-objective GA (MOGA) approach, the approximate rules were mined from the 

customer survey data. Table 2 shows the approximate rules for the affective dimension 

‘Handiness’ determined based on the MOGA-based rule mining approach. The details of the 

rule mining using MOGA approach are detailed in the authors’ previous study (Fung, 2012). 

In this case study, the proposed guided search GA approach was implemented with 

MATLAB software programming language to maximize the “handiness” of mobile phone 

design. The fitness function of the GA (8) is the “the-smaller-the-better” function, so the 

threshold of the target value was set to 1×10
-5

 as the stopping criteria of the GA optimization. 

Four different GA optimization strategies were used to investigate the performance of 

the proposed guided search GA. These include the non-guided search strategy (“No GS”), 

three guided search strategies using all rules (“GS All R”), only positive rules (“GS +ve R”), 

and only negative rules (“GS -ve R”). The test on No GS executed the non-constrained GA 

and no guided search operators. By contrast, GS All R applied the constraints and facilitated 

the search operators to thoroughly guide the GA search. GS +ve R adopted only the guided 

search operators defined by positive rules, as shown in Table 3. GS -ve R performed the 

constrained GA with the penalty approach, and the constraints were defined based on the 

negative rules shown in Table 3. GS +ve R and GS -ve R were used to investigate the 

performance of the partially guided search approach when the rule set is incomplete or 

contains either positive or negative rules only. 
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Table 2  Approximate rules obtained based on the MOGA-based rule-mining method 

 Rule 

No. 
Rule Statements CF(R) w(R) Def(R) 

F
in

d
in

g
 u

p
p
er

 l
im

it
 (

+
v
e 

R
) 

R1 IF Bottom shape (A2)  [x2,2]  Width (A6)  

[51, 56]  Border (A8)  [2, 2.6], THEN  ≤ 

2 [VH, H].  

 

0.74 0.95 0.75 

R2 IF Bottom shape (A2)  [ x2,2]  Width (A6)  

[51, 56]  Thickness (A7)  [9, 11], THEN  

≤ 2 [VH, H].  

 

0.65 0.87 0.75 

R3 IF Bottom shape (A2)  [ x2,2]  Thickness (A7) 

 [9, 13],  

THEN  ≤ 2 [VH, H].  

 

0.5 0.88 0.75 

R4 IF Button (A3)  [x3,3]  Layout (A4)  [x4,3]  

Border (A8)  [2, 5.2], THEN  ≤ 3 [VH, N].  

 

0.94 1.0 0.5 

R5 IF Thickness (A7)  [9, 16],  

THEN  ≤ 3 [VH, N].  

 

0.79 0.99 0.5 

R6 IF Thickness (A7)  [13, 15],  

THEN  ≤ 4 [VH, B].  

 

0.96 0.92 0.25 

F
in

d
in

g
 l

o
w

er
 l

im
it

 (
-v

e 
R

) R7 IF Top (A1)  [x1,1]  Thickness (A7)  [16, 17] 

 Border (A8)  [2, 2.3],  

THEN  ≥ 2 [H, VB]. 

 

0.99 0.84 0.25 

R8 IF Thickness (A7)  [16, 23],  

THEN  ≥ 3 [N, VB]. 

 

0.76 0.83 0.5 

R9 IF Thickness (A7)  [20, 23],  

THEN  ≥ 4 [B, VB]. 

 

0.44 0.91 0.75 

where  is the rule approximation for the handiness of mobile phones, VH is very handy ( =1), H is handy 

( =2), N is normal ( =3), B is bulky ( =4), and VB is very bulky ( =5). 

 

Inequity is avoided with the same initial population for the preference test of all four 

optimization strategies instead of the population from random initialization. This measure 

ensures that all GA convergences begin from the same starting point. For each generation, the 
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best fitness value of the population was evaluated with a population size of 50. For the tests 

of No GS and GS -ve R, ρc and ρm are set to 75% and 25%, respectively, and the guided 

search operators are disabled (ρgs = 0%). For GS All R and GS +ve R, the guided search 

operators were enabled, and ρc, ρm, and ρgs are set to 50%, 25%, and 25%, respectively. 

4.2 Results of design optimization 

Figure 9 shows the GA convergence results of the four GA optimization strategies in which 

the proposed approach converges faster than the non-guided search approaches (No GS). All 

guided search GAs start at the same point where the best and mean fitness values of the initial 

population are 0.25 and 0.4, respectively. After 100 generations, the best fitness value 

gradually decreased from 0.25 to below 0.1 with the No GS approach. By contrast, 

convergence was dramatically improved by the GS All R approach. The mean fitness value 

of the population was minimized to nearly zero (less than 0.01), and the near-optimal solution 

was almost found by the GS All R approach after 60 generations. The GS +ve R and GS -ve 

R approaches also provided notable improvements to GA convergence. However, employing 

either GS operators or constraints cannot guide the search as effectively as the GS All R 

search. The GS -ve R approach only slightly impelled the convergence compared with the No 

GS approach. GS +ve R remarkably accelerated convergence in the first 30 generations. 

However, convergence became sluggish, and the fitness value was held above 0.5. The GS 

All R approach yielded the best GA convergence among the four optimization models. 
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Figure 9 Comparison among the convergences of the guided search GAs  

The computational times between the guided search and non-guided search 

approaches were compared. Table 3 shows the computational times of the four optimization 

strategies. Six guided search operators were defined, and their operating rate ρgs was set to 

25%. Table 4 shows three constraints that were set. The computational time of the GS -ve R 

model only required 0.4% more than that of the No GS model in terms of average 

computational time per generation. The GS All R and GS +ve R models required about 40% 

more computational time per generations than the No GS model. Additional computational 

time was required for the objective function evaluation and selection of temporary solutions 

produced by the guided search operators. However, the superior searching ability of the GS 

All R model overcame this problem. The GS All R model reached the target fitness with the 

minimum number of generations and with the shortest total computation time. 
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Table 3 Comparison of the computational time of the guided search genetic algorithms 

GA 

Optimisation 

Strategy 

No. of 

Generations 

Elapsed 

Total Computational 

Time Used / second 

Average Time per 

Generations / 

second 

Best Fitness 

(Minimising) 

‘No GS’ 301 20.02 0.0665 0.1844 

‘GS +ve R’ 213 20.05 0.0941 0.0540 

‘GS -ve R’ 300 20.03 0.0668 0.0779 

‘GS All R’ 130 12.20 0.0938 0.0000 

 

5.  Conclusion 

Consumers always consider both the tangible and intangible aspects of products in their 

purchase decisions. Therefore, a good affective design can attract customers and influence 

their choices. However, product designers are always faced with the problem of determining 

the optimal settings of the design attributes for affective design. In this paper, a novel guided 

search GA approach was proposed to generate the optimal design attribute settings. The 

proposed approach applies constraints and guided search operators, which are formulated 

based on mined rules to guide the GA search and to achieve desirable solutions. A case study 

on the affective design of mobile phones was conducted to illustrate the proposed approach, 

and a number of validation tests were performed to evaluate their effectiveness. The results of 

the tests indicate that the guided search GA approach outperforms the GA approach without 

the guided search strategy in terms of better GA convergence and shorter total computational 

time. Future studies can focus on the development of a guided search MOGA approach to 

solve multi-objective optimization problems. 
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