21 research outputs found

    Study of geopolymerization mechanisms by 27Al-NMR and calorimetry correlation

    Get PDF
    Geopolymers are alumino-silicate binders prepared by reacting a powdered alumino-silicate source (metakaolin) with an alkali silicate “activating” solution. The geopolymerization reaction is a complex process but it is consensual that geopolymers are formed by dissolution of the metakaolin and condensation reactions between silicates and aluminates initially in solution or as dissolution products. However, those two processes occur concomitantly during the geopolymerization. It makes it difficult to study geopolymerization mechanisms in detail for kinetics or thermodynamics purposes. This could explain why detailed mechanistic descriptions are scarce in the literature and why this topic is still a matter of debate. In this study, an experimental method highlighting the different mechanisms involved in the geopolymerization is proposed, allowing the determination of a thermodynamic parameter of the system. The different processes constituting the geopolymerization were dissociated by varying the metakaolin content in geopolymers, for a given activating solution. Reactivity of such mixes was investigated by isothermal conduction microcalorimetry (ICC). Time resolved 27Al static Nuclear Magnetic Resonance (NMR) was used to monitor the concentration of aluminate centers in solution during the reaction. The correlation as function of time of the total heat release measured by ICC with the aluminate centers concentration in solution exhibited the existence of a master curve allowing the determination of a reaction enthalpy. The influence of alkali cations, silicate species and aluminate ions on this reaction enthalpy was then investigated. For the first time, the dependence of the geopolymer thermodynamics over the initial composition of the system was highlighted

    New insights into the role of hydroxide ions and silicate species during geopolymerization

    Get PDF
    The specific role of hydroxide ions in highly alkaline silicate solutions has been hardly investigated due to the difficulty to quantify them. In this study, Hammet acidity functions of sodium silicate solutions have been assessed for the first time. The low acidity function values found in these solutions, when compared to pure sodium hydroxide solutions, has been explained by the buffering effect of silicate species using liquid state 29Si NMR. Such a parameter has then been used to quantify the hydroxide ions ability to react during mixing alkali silicate solutions with metakaolin. Despite lower initial acidity function values for equivalent sodium hydroxide additions when compared to silicate-free solutions, it has been demonstrated that dissolution of the studied metakaolin is much more efficient in presence of silicate species. Such a phenomenon has been attributed to the gradual release of hydroxide ions resulting from silicate species condensation during the metakaloin dissolution

    Coupled Chemo-Hydro-Mechanical analysis of Bituminized Waste swelling due to water up-taking

    Get PDF
    Bituminized Waste materials (BW) were produced by an industrial reprocessing of radioactive waste qualified low or medium activity and long life (LA-LL and MA-LL). BW is composed of precipitation sludge from the chemical reprocessing of spent nuclear fuel, immobilised in bitumen matrix. Geological storage is the reference solution for this kind of wastes. Under geological disposal conditions, and after a period of hundred thousand years, BW will undergo water re-saturation from host rock. Water up-tacking by BW will first induced free swelling in order to fill all different types of void existing in the storage disposal (void in primary canister, void in concrete container and void in rock vault). Then eventually swelling in contact with host rock and under special stress conditions. That's why the study of the behaviour of this type of material is very-important. Bituminized waste can be considered as a very-low permeable material containing one or several salt crystals. In order to describe the behaviour of such a material in contact of water, several mechanisms has to be coupled. The aim of this work is to study theses coupling during water up-tacking. Swelling behaviour in contact of water is govern by two principal mechanisms. First mechanism is the solvent transport leading to the dissolution of salt crystals. During dissolution, salt crystals volume increases, leading to global swelling of the bitumen matrix. Second mechanism is osmotic flow, which is leading directly to an overpressure in pore water due to chemical gradient (osmotic pressure) A model based on classical poromechanical approach has been developed in order to evaluate which is the leading mechanism and to study all the coupling. The chemical part of this model manage the precipitation/dissolution of salt crystals present in the bitumen matrix. It is the principal driving force of water up-taking, leading to salt saturation in pore water and increasing the porosity. That create a chemical gradient (salt concentration gradient) between pore water and host rock's water. Which initiate osmotic phenomenon: the bitumen matrix play the role of semi-permeable membrane allowing increasing of pore water pressure in the bituminized waste (osmotic overpressure). Over wise the porosity created by the salt crystals dissolution allow advectif and diffusive transport of water and salt through the bitumen matrix. The mechanical behaviour is strongly dominated by creep-deformation needing viscoplastic deformation management. A chemo-hydro mechanical numerical model in one dimension has been implemented (finite volume) in order to evaluate all mechanisms and coupling. This numerical model has shown that osmosis is the principal mechanism of water up-taking and that other mechanisms are not negligible. Moreover the difference of behaviour and coupling importance has been studied during both free swelling and water up-taking under constant volume. This work permitted us to find which parameters are needed to be identified experimentally

    Investigating the hydration of calcium sulfoaluminate cements by sodium borate solution - : from boron speciation to hydratation delay

    No full text
    Dans le circuit primaire des réacteurs nucléaires à eau pressurisée, le bore participe au contrôle des réactions de fission. Le traitement de cette solution génère des déchets aqueux contenant une forte concentration en bore (de 1 à 3 mol/L). Le conditionnement de ces déchets à l'aide d'un ciment silico-calcique est compliqué par le fort pouvoir retardateur des ions borate sur l'hydratation du liant. Un traitement des déchets à la chaux est nécessaire pour précipiter les ions borate sous forme d'hexahydroborite. Cette stratégie, si elle limite le retard d'hydratation, ne le supprime pas. Par ailleurs, l'hexahydroborite est instable en milieu cimentaire et se convertit dans le temps en boroaluminate de calcium. Une autre approche pourrait consister à utiliser un ciment sulfoalumineux bélitique à forte teneur en ye'elimite. Ce liant présente en effet l'avantage de former en quantité importante des phases de type AFm et/ou AFt lors de son hydratation, phases qui peuvent incorporer des ions borate dans leur structure.Au cours de ce travail, l'hydratation de ciments sulfoalumineux par des solutions de borate de sodium a été étudiée au jeune âge et à plus long terme (sur une durée de 2 ans) dans l'objectif de préciser l'influence d'un ensemble de paramètres (pH du déchet, concentration en bore, taux de gypse du ciment) sur la vitesse d'hydratation du liant, la nature des hydrates formés, et les propriétés du matériau obtenu (résistance mécanique, stabilité dimensionnelle). Pour ce faire, une démarche analytique, procédant par complexification progressive des systèmes étudiés, a été mise en œuvre. Ainsi ont été successivement abordées la spéciation du bore en solution alcaline, l'étude des phases précipitant au sein des systèmes {CaO, B2O3, Na2O, H2O}, {CaO, B2O3, Al2O3, H2O} et {CaO, Al2O3, B2O3, SO3, H2O}, puis celle des pâtes de ciment gâchées avec une solution boratée simulant le déchet. L'approche expérimentale a été complétée par des modélisations thermodynamiques s'appuyant sur une base de données spécialement développée pour les besoins de l'étude.Il apparaît que le gypse joue un rôle primordial dans le contrôle de la réactivité du ciment. L'ajout de gypse fixe, par un mécanisme indirect, le pH de la solution interstitielle à une valeur proche de 11, ce qui favorise la précipitation transitoire d'un composé boraté faiblement cristallisé, l'ulexite. La dissolution des phases anhydres du ciment est alors fortement ralentie jusqu'à l'épuisement du gypse, conduisant ainsi à des retards de prise considérables. En l'absence de gypse, le retard à l'hydratation est de plus faible amplitude. Dans ces conditions, le pH de la solution interstitielle atteint des valeurs plus élevées, ce qui permet de déstabiliser rapidement l'ulexite. A plus long terme, les ions borate sont incorporés au sein d'une phase de type AFt, en solution solide avec les ions sulfate. Les résultats obtenus permettent de conclure que ce sont les ciments sulfo-alumineux contenant une faible teneur en gypse qui sont les plus adaptés au conditionnement de solutions à forte concentration en bore.In the primary circuit of pressurized water reactors, boron helps controlling the fission reactions. The treatment of this solution produces aqueous low-level or intermediate-level and short lived radioactive with a high boron concentration (up to 1 to 3 mol/L). Stabilization/solidification of such wastes with calcium silicate cement is complicated by the strong retarding effect of borate ions on cement hydration. A calcium hydroxide addition is required to precipitate borate ions into hexahydroborite. With this approach, the hydration delay is limited, but not suppressed. Besides, hexahydroborite is unstable in the cement paste and is progressively converted into a hydrated calcium boroaluminate phase. Another strategy may consist in using belite calcium sulfoaluminate cement with high ye'elimite content. During hydration, this binder forms indeed large amounts of AFm and/or AFt phases which can incorporate borate ions into their structure.In this work, hydration of calcium sulfoaluminate cement by borated solutions was investigated at early age, and over a 2-year period, in order to determine the influence of a set of parameters (boron concentration and pH of the waste, gypsum content of the cement) on the hydration rate of the binder, on the phase assemblage formed, and on the properties of the resulting material (mechanical strength, volume change). An analytical approach was adopted, based on a progressive increase in the complexity of the investigated systems. The focus was successively placed on the speciation of boron in alkaline solution, on the study of the phases formed within the {CaO, B2O3, Na2O, H2O}, {CaO, B2O3, Al2O3, H2O} and {CaO, Al2O3, B2O3, SO3, H2O} systems, and on the characterization of cement pastes prepared with a borate solution which mimicked the waste. The experimental approach was completed by thermodynamic modelling using a database specially developed for the needs of the study. Gypsum appears to play a key role in controlling the reactivity of cement. The gypsum addition sets, by an indirect mechanism, the interstitial solution pH at a value close to 11, which promotes the precipitation of a poorly crystallized borated compound, ulexite. Dissolution of the anhydrous phases is strongly slowed down until the exhaustion of gypsum, and major delays are observed. Without any gypsum, the hydration delay is shorter. Under these conditions, the pore solution pH reaches higher values after mixing. Ulexite is consequently quickly destabilized. Borate anions are then incorporated into a mixed borate/sulphate AFt type phase. It appears that calcium sulfoaluminate cements with low gypsum contents should be recommended to solidify borated solutions

    Interplay between silicate and hydroxide ions during geopolymerization

    No full text
    International audienceKeywords: Silicate Hydroxide Hammet Alkali Metakaolin Dissolution Condensation A B S T R A C T Two sets of activating solutions with increasing sodium hydroxide contents were prepared either with or without silicates. Their buffer capacities, i.e. their ability to resist changes in pH, were determined and compared using the Hammett acidity function, a measure of acidity appropriate for concentrated solutions. This is the first time the Hammett acidity function of sodium silicate solutions has been measured. The effects of the buffer capacity and of the initial Hammett acidity function on the reactivity of metakaolin-based pastes were assessed using isothermal conduction micro-calorimetry. The reactivity of metakaolin in sodium hydroxide solutions is shown to be directly related to the initial Hammett acidity function, whereas for sodium silicate mixtures, the buffer capacity is a more pertinent parameter. The mechanism deduced for the role of hydroxide ions during geopo-lymerization also highlights the role of silicate species as a hydroxide reservoir that nurtures the dissolution process

    Etude de l'hydratation des ciments sulfo-alumineux par des solutions de borate de sodium (de la spéciation du bore au retard à l'hydratation)

    No full text
    Dans le circuit primaire des réacteurs nucléaires à eau pressurisée, le bore participe au contrôle des réactions de fission. Le traitement de cette solution génère des déchets aqueux contenant une forte concentration en bore (de 1 à 3 mol/L). Le conditionnement de ces déchets à l'aide d'un ciment silico-calcique est compliqué par le fort pouvoir retardateur des ions borate sur l'hydratation du liant. Un traitement des déchets à la chaux est nécessaire pour précipiter les ions borate sous forme d'hexahydroborite. Cette stratégie, si elle limite le retard d'hydratation, ne le supprime pas. Par ailleurs, l'hexahydroborite est instable en milieu cimentaire et se convertit dans le temps en boroaluminate de calcium. Une autre approche pourrait consister à utiliser un ciment sulfoalumineux bélitique à forte teneur en ye'elimite. Ce liant présente en effet l'avantage de former en quantité importante des phases de type AFm et/ou AFt lors de son hydratation, phases qui peuvent incorporer des ions borate dans leur structure.Au cours de ce travail, l'hydratation de ciments sulfoalumineux par des solutions de borate de sodium a été étudiée au jeune âge et à plus long terme (sur une durée de 2 ans) dans l'objectif de préciser l'influence d'un ensemble de paramètres (pH du déchet, concentration en bore, taux de gypse du ciment) sur la vitesse d'hydratation du liant, la nature des hydrates formés, et les propriétés du matériau obtenu (résistance mécanique, stabilité dimensionnelle). Pour ce faire, une démarche analytique, procédant par complexification progressive des systèmes étudiés, a été mise en œuvre. Ainsi ont été successivement abordées la spéciation du bore en solution alcaline, l'étude des phases précipitant au sein des systèmes {CaO, B2O3, Na2O, H2O}, {CaO, B2O3, Al2O3, H2O} et {CaO, Al2O3, B2O3, SO3, H2O}, puis celle des pâtes de ciment gâchées avec une solution boratée simulant le déchet. L'approche expérimentale a été complétée par des modélisations thermodynamiques s'appuyant sur une base de données spécialement développée pour les besoins de l'étude.Il apparaît que le gypse joue un rôle primordial dans le contrôle de la réactivité du ciment. L'ajout de gypse fixe, par un mécanisme indirect, le pH de la solution interstitielle à une valeur proche de 11, ce qui favorise la précipitation transitoire d'un composé boraté faiblement cristallisé, l'ulexite. La dissolution des phases anhydres du ciment est alors fortement ralentie jusqu'à l'épuisement du gypse, conduisant ainsi à des retards de prise considérables. En l'absence de gypse, le retard à l'hydratation est de plus faible amplitude. Dans ces conditions, le pH de la solution interstitielle atteint des valeurs plus élevées, ce qui permet de déstabiliser rapidement l'ulexite. A plus long terme, les ions borate sont incorporés au sein d'une phase de type AFt, en solution solide avec les ions sulfate. Les résultats obtenus permettent de conclure que ce sont les ciments sulfo-alumineux contenant une faible teneur en gypse qui sont les plus adaptés au conditionnement de solutions à forte concentration en bore.In the primary circuit of pressurized water reactors, boron helps controlling the fission reactions. The treatment of this solution produces aqueous low-level or intermediate-level and short lived radioactive with a high boron concentration (up to 1 to 3 mol/L). Stabilization/solidification of such wastes with calcium silicate cement is complicated by the strong retarding effect of borate ions on cement hydration. A calcium hydroxide addition is required to precipitate borate ions into hexahydroborite. With this approach, the hydration delay is limited, but not suppressed. Besides, hexahydroborite is unstable in the cement paste and is progressively converted into a hydrated calcium boroaluminate phase. Another strategy may consist in using belite calcium sulfoaluminate cement with high ye'elimite content. During hydration, this binder forms indeed large amounts of AFm and/or AFt phases which can incorporate borate ions into their structure.In this work, hydration of calcium sulfoaluminate cement by borated solutions was investigated at early age, and over a 2-year period, in order to determine the influence of a set of parameters (boron concentration and pH of the waste, gypsum content of the cement) on the hydration rate of the binder, on the phase assemblage formed, and on the properties of the resulting material (mechanical strength, volume change). An analytical approach was adopted, based on a progressive increase in the complexity of the investigated systems. The focus was successively placed on the speciation of boron in alkaline solution, on the study of the phases formed within the {CaO, B2O3, Na2O, H2O}, {CaO, B2O3, Al2O3, H2O} and {CaO, Al2O3, B2O3, SO3, H2O} systems, and on the characterization of cement pastes prepared with a borate solution which mimicked the waste. The experimental approach was completed by thermodynamic modelling using a database specially developed for the needs of the study. Gypsum appears to play a key role in controlling the reactivity of cement. The gypsum addition sets, by an indirect mechanism, the interstitial solution pH at a value close to 11, which promotes the precipitation of a poorly crystallized borated compound, ulexite. Dissolution of the anhydrous phases is strongly slowed down until the exhaustion of gypsum, and major delays are observed. Without any gypsum, the hydration delay is shorter. Under these conditions, the pore solution pH reaches higher values after mixing. Ulexite is consequently quickly destabilized. Borate anions are then incorporated into a mixed borate/sulphate AFt type phase. It appears that calcium sulfoaluminate cements with low gypsum contents should be recommended to solidify borated solutions.MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Dissociation mechanisms of dissolved alkali silicates in sodium hydroxide

    No full text
    International audienceRecent accelerated simulations of the decondensation of silicates by sodium hydroxide open a window on understanding complex mechanisms of the depolymerization of silicate chains. Herein, complex mechanisms of decondensation that involve two water molecules (or OH^– groups) are unveiled. The study of two different solutions, having the same chemical composition but in different concentration, help one to draw more general conclusions on the dissociation mechanism in silicate solutions. We find that the dissociation is not always assisted by single water molecules but that in about 20% of the cases two water molecules (or OH^–) are present in the near environment. The results underline the importance to consider explicit water solvent in which water molecules are reactive

    Thermal behaviour of Bituminized Waste Products

    No full text
    International audienceIn France, bitumen was chosen during the 60's as an efficient embedding material for low and medium activity nuclear waste (sludges), owing to its high chemical inertness, impermeability, and confining ability. In the scope of the nuclear safety process, the thermal behavior of these bituminized sludges should be investigated during their whole life: it is thus crucial to study the physicochemical and thermochemical phenomena involved when they are exposed to heat. Thermogravimetric analysis coupled to differential thermal analysis was used to assess kinetic parameters related to reactions that occur when these materials are exposed to non-isothermal heat conditions, in various atmospheres (nitrogen, air). Firstly, a simplified system, pure bitumen, was studied. The degree of complexity of the studied system was then increased, by taking into account salts present in significant quantities in the nuclear sludges, in particular sodium nitrate.Under nitrogen atmosphere, pure bitumen shows a single thermal event, which is attributed to its pyrolysis. Under air, it undergoes three exothermal and one endothermal events that result from combustion and cracking reactions, respectively. Under nitrogen, bitumen embedding sodium nitrate shows an exothermic peak due to the combustion reaction of the bitumen by the nitrates. Activation energy for each event has been determined using several kinetic methods from non-isothermal heat conditions
    corecore