10,484 research outputs found

    C^+ distribution around S1 in rho Ophiuchi

    Full text link
    We analyze a [C II] 158 micron map obtained with the L2 GREAT receiver on SOFIA of the emission/reflection nebula illuminated by the early B star S1 in the rho-OphA cloud core. This data set has been complemented with maps of CO(3-2), 13CO(3-2) and C18O(3-2), observed as a part of the JCMT Gould Belt Survey, with archival HCO^+(4-3) JCMT data, as well as with [O I] 63 and 145 micron imaging with Herschel/PACS. The [C II] emission is completely dominated by the strong PDR emission from the nebula surrounding S1 expanding into the dense Oph A molecular cloud west and south of S1. The [C II] emission is significantly blue shifted relative to the CO spectra and also relative to the systemic velocity, particularly in the northwestern part of the nebula. The [C II] lines are broader towards the center of the S1 nebula and narrower towards the PDR shell. The [C II] lines are strongly self-absorbed over an extended region in the S1 PDR. Based on the strength of the [13C II] F = 2-1 hyperfine component, [C II] is significantly optically thick over most of the nebula. CO and 13CO(3-2) spectra are strongly self-absorbed, while C18O(3-2) is single peaked and centered in the middle of the self-absorption. We have used a simple two-layer LTE model to characterize the background and foreground cloud contributing to the [C II] emission. From this analysis we estimate the extinction due to the foreground cloud to be ~9.9 mag, which is slightly less than the reddening estimated towards S1. Since some of the hot gas in the PDR is not traced by low J CO emission, this result appears quite plausible. Using a plane parallel PDR model with the observed [OI(145)]/[C II] brightness ratio and an estimated FUV intensity of 3100-5000 G0 suggests that the density of the [C II] emitting gas is ~3-4x10^3 cm^-3.Comment: Accepted for publication in Astronomy & Astrophysic

    Transitions in the morphological features, habitat use, and diet of young-of-the-year goosefish (Lophius americanus)

    Get PDF
    This study was designed to improve our understanding of transitions in the early life history and the distribution, habitat use, and diets for young-of-the-year (YOY) goosefish (Lophius americanus) and, as a result, their role in northeastern U.S. continental shelf ecosystems. Pelagic juveniles (>12 to ca. 50 mm total length [TL]) were distributed over most portions of the continental shelf in the Middle Atlantic Bight, Georges Bank, and into the Gulf of Maine. Most individuals settled by 50−85 mm TL and reached approximately 60−120 mm TL by one year of age. Pelagic YOY fed on chaetognaths, hyperiid amphipods, calanoid copepods, and ostracods, and benthic YOY had a varied diet of fishes and benthic crustaceans. Goosefish are widely scattered on the continental shelf in the Middle Atlantic Bight during their early life history and once settled, are habitat generalists, and thus play a role in many continental shelf habi

    Origin of positive magnetoresistance in small-amplitude unidirectional lateral superlattices

    Full text link
    We report quantitative analysis of positive magnetoresistance (PMR) for unidirectional-lateral-superlattice samples with relatively small periods (a=92-184 nm) and modulation amplitudes (V_0=0.015-0.25 meV). By comparing observed PMR's with ones calculated using experimentally obtained mobilities, quantum mobilities, and V_0's, it is shown that contribution from streaming orbits (SO) accounts for only small fraction of the total PMR. For small V_0, the limiting magnetic field B_e of SO can be identified as an inflection point of the magnetoresistance trace. The major part of PMR is ascribed to drift velocity arising from incompleted cyclotron orbits obstructed by scatterings.Comment: 12 pages, 9 figures, REVTe

    PSpectRe: A Pseudo-Spectral Code for (P)reheating

    Full text link
    PSpectRe is a C++ program that uses Fourier-space pseudo-spectral methods to evolve interacting scalar fields in an expanding universe. PSpectRe is optimized for the analysis of parametric resonance in the post-inflationary universe, and provides an alternative to finite differencing codes, such as Defrost and LatticeEasy. PSpectRe has both second- (Velocity-Verlet) and fourth-order (Runge-Kutta) time integrators. Given the same number of spatial points and/or momentum modes, PSpectRe is not significantly slower than finite differencing codes, despite the need for multiple Fourier transforms at each timestep, and exhibits excellent energy conservation. Further, by computing the post-resonance equation of state, we show that in some circumstances PSpectRe obtains reliable results while using substantially fewer points than a finite differencing code. PSpectRe is designed to be easily extended to other problems in early-universe cosmology, including the generation of gravitational waves during phase transitions and pre-inflationary bubble collisions. Specific applications of this code will be pursued in future work.Comment: 22 pages; source code for PSpectRe available: http://easther.physics.yale.edu v2 Typos fixed, minor improvements to wording; v3 updated as per referee comment

    Optimal Moments for the Analysis of Peculiar Velocity Surveys

    Get PDF
    We present a new method for the analysis of peculiar velocity surveys which removes contributions to velocities from small scale, nonlinear velocity modes while retaining information about large scale motions. Our method utilizes Karhunen--Lo\`eve methods of data compression to construct a set of moments out of the velocities which are minimally sensitive to small scale power. The set of moments are then used in a likelihood analysis. We develop criteria for the selection of moments, as well as a statistic to quantify the overall sensitivity of a set of moments to small scale power. Although we discuss our method in the context of peculiar velocity surveys, it may also prove useful in other situations where data filtering is required.Comment: 25 Pages, 3 figures. Submitted to Ap

    A Cosmological No-Hair Theorem

    Full text link
    A generalisation of Price's theorem is given for application to Inflationary Cosmologies. Namely, we show that on a Schwarzschild--de Sitter background there are no static solutions to the wave or gravitational perturbation equations for modes with angular momentum greater than their intrinsic spin.Comment: 9 pages, NCL94 -TP4, (Revtex

    Classical stability and quantum instability of black-hole Cauchy horizons

    Full text link
    For a certain region of the parameter space {M,e,Λ}\{M,e,\Lambda\}, the Cauchy horizon of a (charged) black hole residing in de Sitter space is classically stable to gravitational perturbations. This implies that, when left to its own devices, classical theory is unable to retain full predictive power: the evolution of physical fields beyond the Cauchy horizon is not uniquely determined by the initial conditions. In this paper we argue that the Cauchy horizon of a Reissner-Nordstr\"om-de Sitter black hole must always be unstable quantum mechanically.Comment: 4 pages; uses ReVTeX; figure available upon request to [email protected]

    Determining the phonon DOS from specific heat measurements via maximum entropy methods

    Get PDF
    The maximum entropy and reverse Monte-Carlo methods are applied to the computation of the phonon density of states (DOS) from heat capacity data. The approach is introduced and the formalism is described. Simulated data is used to test the method, and its sensitivity to noise. Heat capacity measurements from diamond are used to demonstrate the use of the method with experimental data. Comparison between maximum entropy and reverse Monte-Carlo results shows the form of the entropy used here is correct, and that results are stable and reliable. Major features of the DOS are picked out, and acoustic and optical phonons can be treated with the same approach. The treatment set out in this paper provides a cost-effective and reliable method for studies of the phonon properties of materials.Comment: Reprint to improve access. 10 pages, 6 figure
    corecore