16,977 research outputs found
Hamiltonian model of capture into mean motion resonance
Mean motion resonances are a common feature of both our own Solar System and
of extrasolar planetary systems. Bodies can be trapped in resonance when their
orbital semi-major axes change, for instance when they migrate through a
protoplanetary disc. We use a Hamiltonian model to thoroughly investigate the
capture behaviour for first and second order resonances. Using this method, all
resonances of the same order can be described by one equation, with
applications to specific resonances by appropriate scaling. We focus on the
limit where one body is a massless test particle and the other a massive
planet. We quantify how the the probability of capture into a resonance depends
on the relative migration rate of the planet and particle, and the particle's
eccentricity. Resonant capture fails for high migration rates, and has
decreasing probability for higher eccentricities, although for certain
migration rates, capture probability peaks at a finite eccentricity. We also
calculate libration amplitudes and the offset of the libration centres for
captured particles, and the change in eccentricity if capture does not occur.
Libration amplitudes are higher for larger initial eccentricity. The model
allows for a complete description of a particle's behaviour as it successively
encounters several resonances. The model is applicable to many scenarios,
including (i) Planet migration through gas discs trapping other planets or
planetesimals in resonances; (ii) Planet migration through a debris disc; (iii)
Dust migration through PR drag. Full details can be found in
\cite{2010submitted}. (Abridged)Comment: 4 pages, Proceedings of IAUS276 "The Astrophysics of Planetary
Systems: Formation, Structure, and Dynamical Evolution
Recommended from our members
Periportal Capsulotomy: A Technique for Limited Violation of the Hip Capsule During Arthroscopy for Femoroacetabular Impingement.
Hip arthroscopy has become the standard treatment for symptomatic femoroacetabular impingement as patients have shown good outcomes and high satisfaction with this intervention. However, capsular management to gain access for intra-articular procedures remains greatly debated. Capsular closure is advocated particularly in the setting of interportal or T-capsulotomy to avoid complications of instability or nonhealing capsule. We introduce a technique for capsular management through a limited periportal capsulotomy during arthroscopic treatment of femoroacetabular impingement. In using dilation of the anterolateral and mid-anterior portals without completion of a full interportal capsulotomy, the stabilizing iliofemoral ligament is preserved. We have found that periportal capsulotomy provides safe and sufficient access to the hip joint without necessitating capsular closure
A decreased probability of habitable planet formation around low-mass stars
Smaller terrestrial planets (< 0.3 Earth masses) are less likely to retain
the substantial atmospheres and ongoing tectonic activity probably required to
support life. A key element in determining if sufficiently massive "sustainably
habitable" planets can form is the availability of solid planet-forming
material. We use dynamical simulations of terrestrial planet formation from
planetary embryos and simple scaling arguments to explore the implications of
correlations between terrestrial planet mass, disk mass, and the mass of the
parent star. We assume that the protoplanetary disk mass scales with stellar
mass as Mdisk ~ f Mstar^h, where f measures the relative disk mass, and 1/2 < h
< 2, so that disk mass decreases with decreasing stellar mass. We consider
systems without Jovian planets, based on current models and observations for M
stars. We assume the mass of a planet formed in some annulus of a disk with
given parameters is proportional to the disk mass in that annulus, and show
with a suite of simulations of late-stage accretion that the adopted
prescription is surprisingly accurate. Our results suggest that the fraction of
systems with sufficient disk mass to form > 0.3 Earth mass habitable planets
decreases for low-mass stars for every realistic combination of parameters.
This "habitable fraction" is small for stellar masses below a mass in the
interval 0.5 to 0.8 Solar masses, depending on disk parameters, an interval
that excludes most M stars. Radial mixing and therefore water delivery are
inefficient in lower-mass disks commonly found around low-mass stars, such that
terrestrial planets in the habitable zones of most low-mass stars are likely to
be small and dry.Comment: Accepted to ApJ. 11 pages, 6 figure
A âwork in progressâ?: UK researchers and participation in public engagement
The funders of UK research seek to embed public engagement by researchers within the culture of UK research. Within this context, this paper provides a snapshot of the UK public engagement landscape by reporting on new quantitative research that examines the experiences and perspectives of UK researchers (n = 2,454) and public engagement support staff (n = 260). The research suggests that ambitions to embed public engagement by researchers within institutional cultures can be understood as a 'work in progress'. There are indications that public engagement is part of the UK research landscape. At the same time, the research suggests that researchers' public engagement efforts are currently constrained; there is evidence of a disconnect between researchers themselves and broader institutional contexts of public engagement, and the sector is overwhelmingly driven by funding and rewards for research, teaching and other activities. In conclusion, these results indicate that, while current strategies have been helpful, longer term effort is required, perhaps targeting particular domains and, more fundamentally, perhaps featuring greater support and reward for public engagement
Deep VLT spectroscopy of the z=2.49 Radio Galaxy MRC 2104-242: Evidence for a metallicity gradient in its extended emission line region
We present spectroscopic observations of the rest-frame UV line emission
around radio galaxy MRC 2104-242 at z=2.49, obtained with FORS1 on VLT Antu.
The morphology of the halo is dominated by two spatially resolved regions. Lya
is extended by >12 arcsec along the radio axis, CIV and HeII are extended by ~8
arcsec. The overall spectrum is typical for that of high redshift radio
galaxies. The most striking spatial variation is that NV is present in the
spectrum of the region associated with the center of the galaxy hosting the
radio source, the northern region, while absent in the southern region.
Assuming that the gas is photoionized by a hidden quasar, the difference in NV
emission can be explained by a metallicity gradient within the halo. This is
consistent with a scenario in which the gas is associated with a massive
cooling flow or originates from the debris of the merging of two or more
galaxies.Comment: Accepted for publication in A&A Letter
The (In)Stability of Planetary Systems
We present results of numerical simulations which examine the dynamical
stability of known planetary systems, a star with two or more planets. First we
vary the initial conditions of each system based on observational data. We then
determine regions of phase space which produce stable planetary configurations.
For each system we perform 1000 ~1 million year integrations. We examine
upsilon And, HD83443, GJ876, HD82943, 47UMa, HD168443, and the solar system
(SS). We find that the resonant systems, 2 planets in a first order mean motion
resonance, (HD82943 and GJ876) have very narrow zones of stability. The
interacting systems, not in first order resonance, but able to perturb each
other (upsilon And, 47UMa, and SS) have broad regions of stability. The
separated systems, 2 planets beyond 10:1 resonance, (we only examine HD83443
and HD168443) are fully stable. Furthermore we find that the best fits to the
interacting and resonant systems place them very close to unstable regions. The
boundary in phase space between stability and instability depends strongly on
the eccentricities, and (if applicable) the proximity of the system to perfect
resonance. In addition to million year integrations, we also examined stability
on ~100 million year timescales. For each system we ran ~10 long term
simulations, and find that the Keplerian fits to these systems all contain
configurations which may be regular on this timescale.Comment: 37 pages, 49 figures, 13 tables, submitted to Ap
Strain monitoring of tapestries: results of a three-year research project
The outcomes of an interdisciplinary research project between conservators and engineers investigating the strain experienced by different areas of a tapestry are described. Two techniques were used: full-field monitoring using digital image correlation (DIC) and point measurements using optical fibre sensors. Results showed that it is possible to quantify the global strain across a discrete area of a tapestry using DIC; optical fibre and other sensors were used to validate the DIC. Strain maps created by the DIC depict areas of high and low strain and can be overlaid on images of the tapestry, creating a useful visual tool for conservators, custodians and the general public. DIC identifies areas of high strain not obvious to the naked eye. The equipment can be used in situ in a historic house. In addition the work demonstrated the close relationship between relative humidity and strain
Epithelial integrin alpha 6 beta 4: complete primary structure of alpha 6 and variant forms of beta 4.
The integrin alpha 6 beta 4 is a heterodimer predominantly expressed by epithelia. While no definite receptor function has yet been assigned to it, this integrin may mediate adhesive and/or migratory functions of epithelial cells. We have determined the complete primary structure of both the alpha 6 and beta 4 subunits from cDNA clones isolated from pancreatic carcinoma cell line libraries. The deduced amino acid sequence of alpha 6 is homologous to other integrin alpha chains (18-26% identity). Antibodies to an alpha 6 carboxy terminus peptide immunoprecipitated alpha 6 beta 4 complexes from carcinoma cells and alpha 6 beta 1 complexes from platelets, providing further evidence for the association of alpha 6 with more than one beta subunit. The deduced amino acid sequence of beta 4 predicts an extracellular portion homologous to other integrin beta chains, and a unique cytoplasmic domain comprised of greater than 1,000 residues. This agrees with the structures of the beta 4 cDNAs from normal epithelial cells (Suzuki, S., and Y. Naitoh. 1990. EMBO [Eur. Mol. Biol. Organ.] J. 9:757-763; Hogervost, F., I. Kuikman, A. E. G. Kr. von dem Borne, and A. Sonnenberg. 1990. EMBO [Eur. Mol. Biol. Organ.] J. 9:765-770). Compared to these structures, however, the beta 4 cDNAs that we have cloned from carcinoma cells contain extra sequences. One of these is located in the 5'-untranslated region, and may encode regulatory sequences. Another specifies a segment of 70 amino acids in the cytoplasmic tail. Amplification by reverse transcription-polymerase chain reaction of mRNA indicated that multiple forms of beta 4 may exist, possibly due to cell-type specific alternative splicing. The unique structure of beta 4 suggests its involvement in novel cytoskeletal interactions. Consistent with this possibility, alpha 6 beta 4 is mostly concentrated on the basal surface of epithelial cells, but does not colocalize with components of adhesion plaques
Applications of polymer optical fibre grating sensors to condition monitoring of textiles
Fibre Bragg gratings (FBGs) in polymer optical fibres (POFs) have been used to measure the strain in a woven textile.
FBGs in both POFs and silica optical fibres were attached to a woven textile specimen, and their performance
characterised. It was demonstrated that the POF FBGs provide improved strain transfer coefficients and reduce local
structural reinforcement compared to silica FBGs and therefore make a more suitable proposition for textile monitoring
- âŠ