135 research outputs found

    Comparison of pharmacist managed anticoagulation with usual medical care in a family medicine clinic

    Get PDF
    Background The beneficial outcomes of oral anticoagulation therapy are dependent upon achieving and maintaining an optimal INR therapeutic range. There is growing evidence that better outcomes are achieved when anticoagulation is managed by a pharmacist with expertise in anticoagulation management rather than usual care by family physicians. This study compared a pharmacist managed anticoagulation program (PC) to usual physician care (UC) in a family medicine clinic. Methods A retrospective cohort study was carried out in a family medicine clinic which included a clinical pharmacist. In 2006, the pharmacist assumed anticoagulation management. For a 17-month period, the PC group (n = 112) of patients on warfarin were compared to the UC patients (n = 81) for a similar period prior to 2006. The primary outcome was the percentage of time patients' INR was in the therapeutic range (TTR). Secondary outcomes were the percentage of time in therapeutic range within ± 0.3 units of the recommended range (expanded TTR) and percentage of time the INR was >5.0 or <1.5. Results The baseline characteristics were similar between the groups. Fifty-five percent of the PC group was male with a mean age of 67 years; 51% of the UC group was male with a mean age of 71 years. The most common indications for warfarin in both groups were atrial fibrillation, mechanical heart valves and deep vein thrombosis. The TTR was 73% for PC and 65% for UC (p 5 were 0.3% for PC patients and 0.1% for UC (p < 0.0001). Conclusion The pharmacist-managed anticoagulation program within a family practice clinic compared to usual care by the physicians achieved significantly better INR control as measured by the percentage of time patients' INR values were kept in both the therapeutic and expanded range. Based on the results of this study, a collaborative family practice clinic using pharmacists and physicians may be an effective model for anticoagulation management with these results verified in future prospective randomized studies

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    What evidence exists on the links between natural climate solutions and climate change mitigation outcomes in subtropical and tropical terrestrial regions? A systematic map protocol

    Get PDF
    Background Natural climate solutions (NCS)—actions to conserve, restore, and modify natural and modified ecosystems to increase carbon storage or avoid greenhouse gas (GHG) emissions—are increasingly regarded as important pathways for climate change mitigation, while contributing to our global conservation efforts, overall planetary resilience, and sustainable development goals. Recently, projections posit that terrestrial-based NCS can potentially capture or avoid the emission of at least 11 Gt (gigatons) of carbon dioxide equivalent a year, or roughly encompassing one third of the emissions reductions needed to meet the Paris Climate Agreement goals by 2030. NCS interventions also purport to provide co-benefits such as improved productivity and livelihoods from sustainable natural resource management, protection of locally and culturally important natural areas, and downstream climate adaptation benefits. Attention on implementing NCS to address climate change across global and national agendas has grown—however, clear understanding of which types of NCS interventions have undergone substantial study versus those that require additional evidence is still lacking. This study aims to conduct a systematic map to collate and describe the current state, distribution, and methods used for evidence on the links between NCS interventions and climate change mitigation outcomes within tropical and sub-tropical terrestrial ecosystems. Results of this study can be used to inform program and policy design and highlight critical knowledge gaps where future evaluation, research, and syntheses are needed. Methods To develop this systematic map, we will search two bibliographic databases (including 11 indices) and 67 organization websites, backward citation chase from 39 existing evidence syntheses, and solicit information from key informants. All searches will be conducted in English and encompass subtropical and tropical terrestrial ecosystems (forests, grasslands, mangroves, agricultural areas). Search results will be screened at title and abstract, and full text levels, recording both the number of excluded articles and reasons for exclusion. Key meta-data from included articles will be coded and reported in a narrative review that will summarize trends in the evidence base, assess gaps in knowledge, and provide insights for policy, practice, and research. The data from this systematic map will be made open access

    CD105 (Endoglin) exerts prognostic effects via its role in the microvascular niche of paediatric high grade glioma

    Get PDF
    Paediatric high grade glioma (pHGG) (World Health Organisation astrocytoma grades III and IV) remains poor prognosis tumours, with a median survival of only 15 months following diagnosis. Current investigation of anti-angiogenic strategies has focused on adult glioblastoma multiforme (GBM) with phase III trials targeting vascular endothelial growth factor continuing. In this study we investigated whether the degree of vascularity correlated with prognosis in a large cohort of pHGG (n = 150) and whether different vessel markers carried different prognostic value. We found that CD105 (endoglin) had a strongly significant association with poor prognosis on multivariate analysis (p = <0.001). Supervised hierarchical clustering of genome wide gene expression data identified 13 genes associated with differential degrees of vascularity in the cohort. The novel angiogenesis-associated genes identified in this analysis (including MIPOL-1 and ENPP5) were validated by realtime polymerase chain reaction. We also demonstrate that CD105 positive blood vessels associate with CD133 positive tumour cells and that a proportion of CD105 positive vessel cells demonstrates co-positivity for CD133, suggesting that the recently described phenomenon of vasculogenic mimicry occurs in pHGG. Together, the data suggest that targeting angiogenesis, and in particular CD105, is a valid therapeutic strategy for pHGG

    Bone marrow stromal cells attenuate sepsis via prostaglandin E2— dependent reprogramming of host macrophages to increase their interleukin-10 production

    Get PDF
    Sepsis causes over 200,000 deaths yearly in the US; better treatments are urgently needed. Administering bone marrow stromal cells (BMSCs—also known as mesenchymal stem cells) to mice before or shortly after inducing sepsis by cecal ligation and puncture reduced mortality and improved organ function. The beneficial effect of BMSCs was eliminated by macrophage depletion or pretreatment with antibodies specific for interleukin-10 (IL-10) or IL-10 receptor. Monocytes and/ or macrophages from septic lungs made more IL-10 when prepared from mice treated with BMSCs versus untreated mice. Lipopolysaccharide (LPS)-stimulated macrophages produced more IL-10 when cultured with BMSCs, but this effect was eliminated if the BMSCs lacked the genes encoding Toll-like receptor 4, myeloid differentiation primary response gene-88, tumor necrosis factor (TNF) receptor-1a or cyclooxygenase-2. Our results suggest that BMSCs (activated by LPS or TNF-α) reprogram macrophages by releasing prostaglandin E2 that acts on the macrophages through the prostaglandin EP2 and EP4 receptors. Because BMSCs have been successfully given to humans and can easily be cultured and might be used without human leukocyte antigen matching, we suggest that cultured, banked human BMSCs may be effective in treating sepsis in high-risk patient groups.Sepsis, a serious medical condition that affects 18 million people per year worldwide, is characterized by a generalized inflammatory state caused by infection. Widespread activation of inflammation and coagulation pathways progresses to multiple organ dysfunction, collapse of the circulatory system (septic shock) and death. Because as many people die of sepsis annually as from acute myocardial infarction1, a new treatment regimen is desperately needed. In the last few years, it has been discovered that BMSCs are potent modulators of immune responses2-5. We wondered whether such cells could bring the immune response back into balance, thus attenuating the underlying pathophysiology that eventually leads to severe sepsis, septic shock and death6,7. As a model of sepsis, we chose cecal ligation and puncture (CLP), a procedure that has been used for more than two decades8. This mouse model closely resembles the human disease: it has a focal origin (cecum), is caused by multiple intestinal organisms, and results in septicemia with release of bacterial toxins into the circulation. With no treatment, the majority of the mice die 24-48 h postoperatively. Originally published Nature Medicine, Vol. 15, No. 1, Jan 200

    Temperature, Viral Genetics, and the Transmission of West Nile Virus by Culex pipiens Mosquitoes

    Get PDF
    The distribution and intensity of transmission of vector-borne pathogens can be strongly influenced by the competence of vectors. Vector competence, in turn, can be influenced by temperature and viral genetics. West Nile virus (WNV) was introduced into the United States of America in 1999 and subsequently spread throughout much of the Americas. Previously, we have shown that a novel genotype of WNV, WN02, first detected in 2001, spread across the US and was more efficient than the introduced genotype, NY99, at infecting, disseminating, and being transmitted by Culex mosquitoes. In the current study, we determined the relationship between temperature and time since feeding on the probability of transmitting each genotype of WNV. We found that the advantage of the WN02 genotype increases with the product of time and temperature. Thus, warmer temperatures would have facilitated the invasion of the WN02 genotype. In addition, we found that transmission of WNV accelerated sharply with increasing temperature, T, (best fit by a function of T4) showing that traditional degree-day models underestimate the impact of temperature on WNV transmission. This laboratory study suggests that both viral evolution and temperature help shape the distribution and intensity of transmission of WNV, and provides a model for predicting the impact of temperature and global warming on WNV transmission

    OneG: A Computational Tool for Predicting Cryptic Intermediates in the Unfolding Kinetics of Proteins under Native Conditions

    Get PDF
    Understanding the relationships between conformations of proteins and their stabilities is one key to address the protein folding paradigm. The free energy change (ΔG) of unfolding reactions of proteins is measured by traditional denaturation methods and native hydrogen-deuterium (H/D) exchange methods. However, the free energy of unfolding (ΔGU) and the free energy of exchange (ΔGHX) of proteins are not in good agreement, though the experimental conditions of both methods are well matching to each other. The anomaly is due to any one or combinations of the following reasons: (i) effects of cis-trans proline isomerisation under equilibrium unfolding reactions of proteins (ii) inappropriateness in accounting the baselines of melting curves (iii) presence of cryptic intermediates, which may elude the melting curve analysis and (iv) existence of higher energy metastable states in the H/D exchange reactions of proteins. Herein, we have developed a novel computational tool, OneG, which accounts the discrepancy between ΔGU and ΔGHX of proteins by systematically accounting all the four factors mentioned above. The program is fully automated and requires four inputs: three-dimensional structures of proteins, ΔGU, ΔGU* and residue-specific ΔGHX determined under EX2-exchange conditions in the absence of denaturants. The robustness of the program has been validated using experimental data available for proteins such as cytochrome c and apocytochrome b562 and the data analyses revealed that cryptic intermediates of the proteins detected by the experimental methods and the cryptic intermediates predicted by the OneG for those proteins were in good agreement. Furthermore, using OneG, we have shown possible existence of cryptic intermediates and metastable states in the unfolding pathways of cardiotoxin III and cobrotoxin, respectively, which are homologous proteins. The unique application of the program to map the unfolding pathways of proteins under native conditions have been brought into fore and the program is publicly available at http://sblab.sastra.edu/oneg.htm

    DNA Damage, Somatic Aneuploidy, and Malignant Sarcoma Susceptibility in Muscular Dystrophies

    Get PDF
    Albeit genetically highly heterogeneous, muscular dystrophies (MDs) share a convergent pathology leading to muscle wasting accompanied by proliferation of fibrous and fatty tissue, suggesting a common MD–pathomechanism. Here we show that mutations in muscular dystrophy genes (Dmd, Dysf, Capn3, Large) lead to the spontaneous formation of skeletal muscle-derived malignant tumors in mice, presenting as mixed rhabdomyo-, fibro-, and liposarcomas. Primary MD–gene defects and strain background strongly influence sarcoma incidence, latency, localization, and gender prevalence. Combined loss of dystrophin and dysferlin, as well as dystrophin and calpain-3, leads to accelerated tumor formation. Irrespective of the primary gene defects, all MD sarcomas share non-random genomic alterations including frequent losses of tumor suppressors (Cdkn2a, Nf1), amplification of oncogenes (Met, Jun), recurrent duplications of whole chromosomes 8 and 15, and DNA damage. Remarkably, these sarcoma-specific genetic lesions are already regularly present in skeletal muscles in aged MD mice even prior to sarcoma development. Accordingly, we show also that skeletal muscle from human muscular dystrophy patients is affected by gross genomic instability, represented by DNA double-strand breaks and age-related accumulation of aneusomies. These novel aspects of molecular pathologies common to muscular dystrophies and tumor biology will potentially influence the strategies to combat these diseases

    Transcript identification in the BRCA1 candidate region

    Full text link
    Chromosome 17q12-21 is known to contain a gene (or genes) which confers susceptibility to early-onset breast cancer and ovarian cancer (BRCA1). Identification and isolation of BRCA1 will likely provide the basis for increased understanding of the pathogenesis of breast and ovarian cancer, the development of targeted diagnostic and therapeutic approaches, and a means of screening women at risk of being BRCA1 mutation carriers. Genetic and physical maps of the BRCA1 candidate region have been largely completed and efforts are being directed at identification of candidate genes from within this region. We have begun the task of identifying transcripts from this region employing three complementary strategies. These include: 1) direct cDNA screening with cosmids derived from the BRCA1 region; 2) exon amplification; and 3) magnetic bead capture. Transcripts identified using these approaches are being characterized for: 1) tissue expression pattern; 2) the presence of genomic rearrangement in DNA derived from affected members of families believed to show linkage between breast cancer and genetic markers in the BRCA1 candidate interval; 3) altered size and/or expression pattern in RNA prepared from such individuals; and 4) homology to known genes or functional motifs. Germline mutations in affected individuals from these families will serve as presumptive evidence of BRCA1 identity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44201/1/10549_2004_Article_BF00682719.pd

    Effects of erythropoietin on depressive symptoms and neurocognitive deficits in depression and bipolar disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Depression and bipolar disorder are associated with reduced neural plasticity and deficits in memory, attention and executive function. Drug treatments for these affective disorders have insufficient clinical effects in a large group and fail to reverse cognitive deficits. There is thus a need for more effective treatments which aid cognitive function. Erythropoietin (Epo) is involved in neuroplasticity and is a candidate for future treatment of affective disorders. The investigators have demonstrated that a single dose of Epo improves cognitive function and reduces neurocognitive processing of negative emotional information in healthy and depressed individuals similar to effects seen with conventional antidepressants. The current study adds to the previous findings by investigating whether repeated Epo administration has antidepressant effects in patients with treatment resistant depression and reverses cognitive impairments in these patients and in patients with bipolar disorder in remission.</p> <p>Methods/design</p> <p>The trial has a double-blind, placebo-controlled, parallel-group design. 40 patients with treatment-resistant major depression and 40 patients with bipolar disorder in remission are recruited and randomised to receive weekly infusions of Epo (Eprex; 40,000 IU) or saline (NaCl 0.9%) for 8 weeks. Randomisation is stratified for age and gender. The primary outcome parameters for the two studies are: depression severity measured with the Hamilton Depression Rating Scale 17 items (HDRS-17) <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> in study 1 and, in study 2, verbal memory measured with the Rey Auditory Verbal Learning Test (RAVLT) <abbrgrp><abbr bid="B2">2</abbr><abbr bid="B3">3</abbr></abbrgrp>. With inclusion of 40 patients in each study we obtain 86% power to detect clinically relevant differences between intervention and placebo groups on these primary outcomes.</p> <p>Trial registration</p> <p>The trial is approved by the Local Ethics Committee: H-C-2008-092, Danish Medicines Agency: 2612-4020, EudraCT: 2008-04857-14, Danish Data Agency: 2008-41-2711 and ClinicalTrials.gov: NCT 00916552.</p
    corecore