30 research outputs found

    The Role of Parental Cognitive, Behavioral, and Motor Profiles in Clinical Variability in Individuals with Chromosome 16p11.2 Deletions

    Get PDF
    Importance Most disorders caused by copy number variants (CNVs) display significant clinical variability, often referred to as incomplete penetrance and variable expressivity. Genetic and environmental sources of this variability are not well understood. Objectives To investigate the contributors to phenotypic variability in probands with CNVs involving the same genomic region; to measure the effect size for de novo mutation events; and to explore the contribution of familial background to resulting cognitive, behavioral, and motor performance outcomes in probands with de novo CNVs. Design, Setting, and Participants Family-based study design with a volunteer sample of 56 individuals with de novo 16p11.2 deletions and their noncarrier parents and siblings from the Simons Variation in Individuals Project. Main Outcomes and Measures We used linear mixed-model analysis to measure effect size and intraclass correlation to determine the influence of family background for a de novo CNV on quantitative traits representing the following 3 neurodevelopmental domains: cognitive ability (Full-Scale IQ), social behavior (Social Responsiveness Scale), and neuromotor performance (Purdue Pegboard Test). We included an anthropometric trait, body mass index, for comparison. Results A significant deleterious effect of the 16p11.2 deletion was demonstrated across all domains. Relative to the biparental mean, the effect sizes were −1.7 SD for cognitive ability, 2.2 SD for social behavior, and −1.3 SD for neuromotor performance (P \u3c .001). Despite large deleterious effects, significant positive correlations between parents and probands were preserved for the Full-Scale IQ (0.42 [P = .03]), the verbal IQ (0.53 [P = .004]), and the Social Responsiveness Scale (0.52 [P = .009]) scores. We also observed a 1-SD increase in the body mass index of probands compared with siblings, with an intraclass correlation of 0.40 (P = .07). Conclusions and Relevance Analysis of families with de novo CNVs provides the least confounded estimate of the effect size of the 16p11.2 deletion on heritable, quantitative traits and demonstrates a 1- to 2-SD effect across all neurodevelopmental dimensions. Significant parent-proband correlations indicate that family background contributes to the phenotypic variability seen in this and perhaps other CNV disorders and may have implications for counseling families regarding their children’s developmental and psychiatric prognoses. Use of biparental mean scores rather than general population mean scores may be more relevant to examine the effect of a mutation or any other cause of trait variation on a neurodevelopmental outcome and possibly on systems of diagnosis and trait ascertainment for developmental disorders

    DLG4-related synaptopathy: a new rare brain disorder

    Get PDF
    PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants.METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing.RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies.CONCLUSION: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.Genetics of disease, diagnosis and treatmen
    corecore