338 research outputs found

    The Local Minority Game

    Full text link
    Ecologists and economists try to explain collective behavior in terms of competitive systems of selfish individuals with the ability to learn from the past. Statistical physicists have been investigating models which might contribute to the understanding of the underlying mechanisms of these systems. During the last three years one intuitive model, commonly referred to as the Minority Game, has attracted broad attention. Powerful yet simple, the minority game has produced encouraging results which can explain the temporal behaviour of competitive systems. Here we switch the interest to phenomena due to a distribution of the individuals in space. For analyzing these effects we modify the Minority Game and the Local Minority Game is introduced. We study the system both numerically and analytically, using the customary techniques already developped for the ordinary Minority Game

    How does informational heterogeneity affect the quality of forecasts?

    Full text link
    We investigate a toy model of inductive interacting agents aiming to forecast a continuous, exogenous random variable E. Private information on E is spread heterogeneously across agents. Herding turns out to be the preferred forecasting mechanism when heterogeneity is maximal. However in such conditions aggregating information efficiently is hard even in the presence of learning, as the herding ratio rises significantly above the efficient-market expectation of 1 and remarkably close to the empirically observed values. We also study how different parameters (interaction range, learning rate, cost of information and score memory) may affect this scenario and improve efficiency in the hard phase.Comment: 11 pages, 5 figures, updated version (to appear in Physica A

    Thermal treatment of the minority game

    Full text link
    We study a cost function for the aggregate behavior of all the agents involved in the Minority Game (MG) or the Bar Attendance Model (BAM). The cost function allows to define a deterministic, synchronous dynamics that yields results that have the main relevant features than those of the probabilistic, sequential dynamics used for the MG or the BAM. We define a temperature through a Langevin approach in terms of the fluctuations of the average attendance. We prove that the cost function is an extensive quantity that can play the role of an internal energy of the many agent system while the temperature so defined is an intensive parameter. We compare the results of the thermal perturbation to the deterministic dynamics and prove that they agree with those obtained with the MG or BAM in the limit of very low temperature.Comment: 9 pages in PRE format, 6 figure

    Theory of the Three-Group Evolutionary Minority Game

    Full text link
    Based on the adiabatic theory for the evolutionary minority game (EMG) that we proposed earlier[1], we perform a detail analysis of the EMG limited to three groups of agents. We derive a formula for the critical point of the transition from segregation (into opposing groups) to clustering (towards cautious behaviors). Particular to the three-group EMG, the strategy switching in the "extreme" group does not occur at every losing step and is strongly intermittent. This leads to an correction to the critical value of the number of agents at the transition, NcN_c. Our expression for NcN_c is in agreement with the results obtained from our numerical simulations.Comment: 4 pages and 2 figure

    News and price returns from threshold behaviour and vice-versa: exact solution of a simple agent-based market model

    Full text link
    Starting from an exact relationship between news, threshold and price return distributions in the stationary state, I discuss the ability of the Ghoulmie-Cont-Nadal model of traders to produce fat-tailed price returns. Under normal conditions, this model is not able to transform Gaussian news into fat-tailed price returns. When the variance of the news so small that only the players with zero threshold can possibly react to news, this model produces Levy-distributed price returns with a -1 exponent. In the special case of super-linear price impact functions, fat-tailed returns are obtained from well-behaved news.Comment: 4 pages, 3 figures. This is quite possibly the final version. To appear in J. Phys

    Self-Segregation vs. Clustering in the Evolutionary Minority Game

    Full text link
    Complex adaptive systems have been the subject of much recent attention. It is by now well-established that members (`agents') tend to self-segregate into opposing groups characterized by extreme behavior. However, while different social and biological systems manifest different payoffs, the study of such adaptive systems has mostly been restricted to simple situations in which the prize-to-fine ratio, RR, equals unity. In this Letter we explore the dynamics of evolving populations with various different values of the ratio RR, and demonstrate that extreme behavior is in fact {\it not} a generic feature of adaptive systems. In particular, we show that ``confusion'' and ``indecisiveness'' take over in times of depression, in which case cautious agents perform better than extreme ones.Comment: 4 pages, 4 figure

    Temporal oscillations and phase transitions in the evolutionary minority game

    Full text link
    The study of societies of adaptive agents seeking minority status is an active area of research. Recently, it has been demonstrated that such systems display an intriguing phase-transition: agents tend to {\it self-segregate} or to {\it cluster} according to the value of the prize-to-fine ratio, RR. We show that such systems do {\it not} establish a true stationary distribution. The winning-probabilities of the agents display temporal oscillations. The amplitude and frequency of the oscillations depend on the value of RR. The temporal oscillations which characterize the system explain the transition in the global behavior from self-segregation to clustering in the R<1R<1 case.Comment: 5 pages, 5 figure

    Theory of Phase Transition in the Evolutionary Minority Game

    Full text link
    We discover the mechanism for the transition from self-segregation (into opposing groups) to clustering (towards cautious behaviors) in the evolutionary minority game (EMG). The mechanism is illustrated with a statistical mechanics analysis of a simplified EMG involving three groups of agents: two groups of opposing agents and one group of cautious agents. Two key factors affect the population distribution of the agents. One is the market impact (the self-interaction), which has been identified previously. The other is the market inefficiency due to the short-time imbalance in the number of agents using opposite strategies. Large market impact favors "extreme" players who choose fixed strategies, while large market inefficiency favors cautious players. The phase transition depends on the number of agents (NN), the reward-to-fine ratio (RR), as well as the wealth reduction threshold (dd) for switching strategy. When the rate for switching strategy is large, there is strong clustering of cautious agents. On the other hand, when NN is small, the market impact becomes large, and the extreme behavior is favored.Comment: 5 pages and 3 figure

    Structure-preserving desynchronization of minority games

    Get PDF
    Perfect synchronicity in NN-player games is a useful theoretical dream, but communication delays are inevitable and may result in asynchronous interactions. Some systems such as financial markets are asynchronous by design, and yet most theoretical models assume perfectly synchronized actions. We propose a general method to transform standard models of adaptive agents into asynchronous systems while preserving their global structure under some conditions. Using the Minority Game as an example, we find that the phase and fluctuations structure of the standard game subsists even in maximally asynchronous deterministic case, but that it disappears if too much stochasticity is added to the temporal structure of interaction. Allowing for heterogeneous communication speeds and activity patterns gives rise to a new information ecology that we study in details.Comment: 6 pages, 7 figures. New version removed a section and found a new phase transitio

    Kolkata Restaurant Problem as a generalised El Farol Bar Problem

    Full text link
    Generalisation of the El Farol bar problem to that of many bars here leads to the Kolkata restaurant problem, where the decision to go to any restaurant or not is much simpler (depending on the previous experience of course, as in the El Farol bar problem). This generalised problem can be exactly analysed in some limiting cases discussed here. The fluctuation in the restaurant service can be shown to have precisely an inverse cubic behavior, as widely seen in the stock market fluctuations.Comment: 2 column RevTeX4, 4 pages, 3 eps figs; to be published in 'Econophysics of Markets and Business Networks', [Proc. Econophys-Kolkata III], Eds. A. Chatterjee, B. K. Chakrabarti, New Economic Windows Series, Springer, Milan, 2007, pp. 220-22
    corecore