577 research outputs found

    Cyanide-Insensitive Respiration in Relation to Growth of a Low-Temperature Basidiomycete

    Full text link

    Characterisation of penA and tetM resistance genes of Neisseria gonorrhoeae isolated in southern Africa - epidemiological monitoring and resistance development

    Get PDF
    Objective. To investigate penA and tetM resistance gene variation of Neisseria gonorrhoeae in order to define gene types for epidemiological monitoring and resistance development. Design. Isolates of N. gonorrhoeae which were susceptible and resistant to penicillin and/or tetracycline were selected. Strains comprised South African isolates (22 from Bloemfontein, 13 from Transvaal, 20 from the Cape) and 15 Botswana and 4 Namibia isolates. The penA genes (2 kb) of all strains and tetM genes (765 bp) of 11 high-level tetracycline-resistant strains were amplified and restricted with Hpall. Results and conclusions. Twelve different Hpall fingerprint patterns were obtained from the 74 isolates analysed for penicillin-binding protein (PBP) 2 gene (penA) alterations. Focusing on the transpeptidase domain, 25 isolates (3 whole gene patterns, minimal inhibitory concentrations (MICs) ~ 0,03 - 0,125 ug/ml) had restriction sites equivalent to those previously described for a susceptible strain. Of the remaining 9 PBP 2 'gene groups, 25 strains fell into a designated group E. Penicillin/ penicillin + clavulanic acid MICs determined on these group E isolates gave a range of 0,125 - 2,0 ug/ml, although MICs against 4 strains were ~ 0,03 ug/ml. MICs of penicillin/penicillin + c1avulanic acid for the 24 isolates that contained altered PBP 2 transpeptidase gene regions not designated group E were only ~ 0,03 - 0,125 ug/ml. The lack of a Hpall restriction site at nucleotide 1934 in the PBP 2 gene of group E strains was indicative of a small terminal region of N. cinerea DNA. This gene block, which was found in all the southern African areas studied, appears to predispose isolates to increased penicillin resistance. The 25,2 MDa conjugative plasmid carrying the tetM resistance determinant was readily demonstrated in 11 Botswana Namibia isolates exhibiting high-level resistance to tetracycline (MICs > 16 ug/ml). The tetM gene was shown to be of the American type

    Enterococcal endocarditis - a case treated with teicoplanin and amoxycillin

    Get PDF
    The study aimed to determine the antibacterial therapy effective in the cure of endocarditis caused by Enterococcus faecalis resistant to clinically achievable levels of vancomycin. Isolation of the causative enterococcus had been achieved by direct inoculation of the resected valve into the culture medium in theatre. The patient was known to have had an aortic valve defect since childhood and had recently undergone splenectomy following trauma. Blood cultures were negative prior to valve replacement. A perivalvular abscess was noted at operation. In vitro minimal bactericidal results and serum activity were the basis of the postoperative choice of drugs. The minimal bactericidal level of teicoplanin was 250 µg/ml and that of amoxycillin 64 µg/ml. Neither is achievable with the advocated dosage. A combination of these two cell-wall-active agents successfully eliminated the infection. Acting at two different sites in the synthesis of the bacterial cell wall, teicoplanin and amoxycillin were found to be bactericidal in vitro at the trough levels of the antibiotics in the serum. The patient recovered fully

    Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock.

    Get PDF
    Posttranslational modifications play central roles in myriad biological pathways including circadian regulation. We employed a circadian proteomic approach to demonstrate that circadian timing of phosphorylation is a critical factor in regulating complex GSK3β-dependent pathways and identified O-GlcNAc transferase (OGT) as a substrate of GSK3β. Interestingly, OGT activity is regulated by GSK3β; hence, OGT and GSK3β exhibit reciprocal regulation. Modulating O-GlcNAcylation levels alter circadian period length in both mice and Drosophila; conversely, protein O-GlcNAcylation is circadianly regulated. Central clock proteins, Clock and Period, are reversibly modified by O-GlcNAcylation to regulate their transcriptional activities. In addition, O-GlcNAcylation of a region in PER2 known to regulate human sleep phase (S662-S674) competes with phosphorylation of this region, and this interplay is at least partly mediated by glucose levels. Together, these results indicate that O-GlcNAcylation serves as a metabolic sensor for clock regulation and works coordinately with phosphorylation to fine-tune circadian clock

    Elucidating drivers of oral epithelial dysplasia formation and malignant transformation to cancer using RNAseq

    Get PDF
    Oral squamous cell carcinoma (OSCC) is a prevalent cancer with poor prognosis. Most OSCC progresses via a non-malignant stage called dysplasia. Effective treatment of dysplasia prior to potential malignant transformation is an unmet clinical need. To identify markers of early disease, we performed RNA sequencing of 19 matched HPV negative patient trios: normal oral mucosa, dysplasia and associated OSCC. We performed differential gene expression, principal component and correlated gene network analysis using these data. We found differences in the immune cell signatures present at different disease stages and were able to distinguish early events in pathogenesis, such as upregulation of many HOX genes, from later events, such as down-regulation of adherens junctions. We herein highlight novel coding and non-coding candidates for involvement in oral dysplasia development and malignant transformation, and speculate on how our findings may guide further translational research into the treatment of oral dysplasia

    A trigger-substrate model for smiling during an automated formative quiz: engagement is the substrate, not frustration

    Get PDF
    INTRODUCTION: Automated tutoring systems aim to respond to the learner’s cognitive state in order to maintain engagement. The end-user’s state might be inferred by interactive timings, bodily movements or facial expressions. Problematic computerized stimuli are known to cause smiling during periods of frustration. METHODS: Forty-four seated, healthy participants (age range 18-35, 18 male) used a handheld trackball to answer a computer-presented, formative, 3-way multiple choice geography quiz, with 9 questions, lasting a total of 175 seconds. Frontal facial videos (10 Hz) were collected with a webcam and processed for facial expressions by CrowdEmotion using a pattern recognition algorithm. Interactivity was recorded by a keystroke logger (Inputlog 5.2). Subjective responses were collected immediately after each quiz using a panel of visual analogue scales (VAS). RESULTS: Smiling was fie-fold enriched during the instantaneous feedback segments of the quiz, and this was correlated with VAS ratings for engagement but not with happiness or frustration. Nevertheless, smiling rate was significantly higher after wrong answers compared to correct ones, and frustration was correlated with the number of questions answered incorrectly. CONCLUSION: The apparent disconnect between the increased smiling during incorrect answers but the lack of correlation between VAS frustration and smiles suggests a trigger-substrate model where engagement is the permissive substrate, while the noises made by the quiz after wrong answers may be the trigger

    Double impact of cigarette smoke and mechanical ventilation on the alveolar epithelial type II cell

    Get PDF
    INTRODUCTION: Ventilator-induced lung injury (VILI) impacts clinical outcomes in acute respiratory distress syndrome (ARDS), which is characterized by neutrophil-mediated inflammation and loss of alveolar barrier function. Recent epidemiological studies suggest that smoking may be a risk factor for the development of ARDS. Because alveolar type II cells are central to maintaining the alveolar epithelial barrier during oxidative stress, mediated in part by neutrophilic inflammation and mechanical ventilation, we hypothesized that exposure to cigarette smoke and mechanical strain have interactive effects leading to the activation of and damage to alveolar type II cells. METHODS: To determine if cigarette smoke increases susceptibility to VILI in vivo, a clinically relevant rat model was established. Rats were exposed to three research cigarettes per day for two weeks. After this period, some rats were mechanically ventilated for 4 hours. Bronchoalveolar lavage (BAL) and differential cell count was done and alveolar type II cells were isolated. Proteomic analysis was performed on the isolated alveolar type II cells to discover alterations in cellular pathways at the protein level that might contribute to injury. Effects on levels of proteins in pathways associated with innate immunity, oxidative stress and apoptosis were evaluated in alveolar type II cell lysates by enzyme-linked immunosorbent assay. Statistical comparisons were performed by t-tests, and the results were corrected for multiple comparisons using the false discovery rate. RESULTS: Tobacco smoke exposure increased airspace neutrophil influx in response to mechanical ventilation. The combined exposure to cigarette smoke and mechanical ventilation significantly increased BAL neutrophil count and protein content. Neutrophils were significantly higher after smoke exposure and ventilation than after ventilation alone. DNA fragments were significantly elevated in alveolar type II cells. Smoke exposure did not significantly alter other protein-level markers of cell activation, including Toll-like receptor 4; caspases 3, 8 and 9; and heat shock protein 70. CONCLUSIONS: Cigarette smoke exposure may impact ventilator-associated alveolar epithelial injury by augmenting neutrophil influx. We found that cigarette smoke had less effect on other pathways previously associated with VILI, including innate immunity, oxidative stress and apoptosis

    Proteomic analysis of platelet-rich and platelet-poor plasma

    Full text link
    Background Autologous blood products, such as platelet-rich plasma (PRP) are commercial products broadly used to accelerate healing of tissues after injuries. However, their content is not standardized and significantly varies in composition, which may lead to differences in clinical efficacy. Also, the underlying molecular mechanisms for therapeutic effects are not well understood. Purpose A proteomic study was performed to compare the composition of low leukocyte PRP, platelet poor plasma (PPP), and blood plasma. Pathway analysis of the proteomic data was performed to evaluate differences between plasma formulations at the molecular level. Low abundance regulatory proteins in plasma were identified and quantified as well as cellular pathways regulated by those proteins. Methods Quantitative proteomic analysis, using multiplexed isotopically labeled tags (TMT labeling) and label-free tandem mass spectrometry, was performed on plasma, low leukocyte PRP, and PPP. Plasma formulations were derived from two blood donors (one donor per experiment). Pathway analysis of the proteomic data identified the major differences between formulations. Results Nearly 600 proteins were detected in three types of blood plasma formulations in two experiments. Identified proteins showed more than 50% overlap between plasma formulations. Detected proteins represented more than 100 canonical pathways, as was identified by pathway analysis. The major pathways and regulatory molecules were linked to inflammation. Conclusion Three types of plasma formulations were compared in two proteomic experiments. The most represented pathways, such as Acute Phase Response, Coagulation, or System of the Complement, had many proteins in common in both experiments. In both experiments plasma sample sets had the same direction of biochemical pathway changes: up- or down-regulation. The most represented biochemical pathways are linked to inflammation

    Electron Capture Dissociation Mass Spectrometry of Tyrosine Nitrated Peptides

    Get PDF
    In vivo protein nitration is associated with many disease conditions that involve oxidative stress and inflammatory response. The modification involves addition of a nitro group at the position ortho to the phenol group of tyrosine to give 3-nitrotyrosine. To understand the mechanisms and consequences of protein nitration, it is necessary to develop methods for identification of nitrotyrosine-containing proteins and localization of the sites of modification.Here, we have investigated the electron capture dissociation (ECD) and collision-induced association (CID) behavior of 3-nitrotyrosine-containing peptides. The presence of nitration did not affect the CID behavior of the peptides. For the doubly-charged peptides, addition of nitration severely inhibited the production of ECD sequence fragments. However, ECD of the triply-charged nitrated peptides resulted in some singly-charged sequence fragments. ECD of the nitrated peptides is characterized by multiple losses of small neutral species including hydroxyl radicals, water and ammonia. The origin of the neutral losses has been investigated by use of activated ion (AI) ECD. Loss of ammonia appears to be the result of non-covalent interactions between the nitro group and protonated lysine side-chains
    • …
    corecore