51 research outputs found

    Spin orbit-induced anisotropic conductivity of a disordered 2DEG

    Full text link
    We present a semi-automated computer-assisted method to generate and calculate diagrams in the disorder averaging approach to disordered 2D conductors with intrinsic spin-orbit interaction (SOI). As an application, we calculate the effect of the SOI on the charge conductivity for disordered 2D systems and rings in the presence of Rashba and Dresselhaus SOI. In an infinite-size 2D system, anisotropic corrections to the conductivity tensor arise due to phase-coherence and the interplay of Rashba and Dresselhaus SOI. The effect is more pronounced in the quasi-onedimensional case, where the conductivity becomes anisotropic already in the presence of only one type of SOI. The anisotropy further increases if the time-reversal symmetry of the Hamiltonian is broken.Comment: 20 pages, 8 figure

    Anisotropic conductivity of disordered 2DEGs due to spin-orbit interactions

    Full text link
    We show that the conductivity tensor of a disordered two-dimensional electron gas becomes anisotropic in the presence of both Rashba and Dresselhaus spin-orbit interactions (SOI). This anisotropy is a mesoscopic effect and vanishes with vanishing charge dephasing time. Using a diagrammatic approach including zero, one, and two-loop diagrams, we show that a consistent calculation needs to go beyond a Boltzmann equation approach. In the absence of charge dephasing and for zero frequency, a finite anisotropy \sigma_{xy} e^2/lhpf arises even for infinitesimal SOI.Comment: 6+ page

    Coulomb-induced Rashba spin-orbit coupling in semiconductor quantum wells

    Get PDF
    In the absence of an external field, the Rashba spin-orbit interaction (SOI) in a two-dimensional electron gas in a semiconductor quantum well arises entirely from the screened electrostatic potential of ionized donors. We adjust the wave functions of a quantum well so that electrons occupying the first (lowest) subband conserve their spin projection along the growth axis (Sz), while the electrons occupying the second subband precess due to Rashba SOI. Such a specially designed quantum well may be used as a spin relaxation trigger: electrons conserve Sz when the applied voltage (or current) is lower than a certain threshold V*; higher voltage switches on the Dyakonov-Perel spin relaxation.Comment: 4+ pages, 6 figure

    Spin-orbit interaction from low-symmetry localized defects in semiconductors

    Full text link
    The presence of low-symmetry impurities or defect complexes in the zinc-blende direct-gap semiconductors (e.g. interstitials, DX-centers) results in a novel spin-orbit term in the effective Hamiltonian for the conduction band. The new extrinsic spin-orbit interaction is proportional to the matrix element of the defect potential between the conduction and the valence bands. Because this interaction arises already in the first order of the expansion of the effective Hamiltonian in powers of Uext/Eg << 1 (where Uext is the pseudopotential of an interstitial atom, and Eg is the band gap), its contribution to the spin relaxation rate may exceed that of the previously studied extrinsic contributions, even for moderate concentrations of impurities.Comment: extended version, 5+ page

    Spin densities in parabolic quantum wires with Rashba spin-orbit interaction

    Full text link
    Using canonical transformations we diagonalize approximately the Hamiltonian of a gaussian wire with Rashba spin-orbit interaction. This proceedure allows us to obtain the energy dispersion relations and the wavefunctions with good accuracy, even in systems with relatively strong Rashba coupling. With these eigenstates one can calculate the non-equilibrium spin densities induced by applying bias voltages across the sample. We focus on the zz-component of the spin density, which is related to the spin Hall effect.Comment: 4 pages, 4 figure

    Aharonov-Bohm magnetization of mesoscopic rings caused by inelastic relaxation

    Full text link
    The magnetization of a system of many mesoscopic rings under non-equilibrium conditions is considered. The corresponding disorder-averaged current in a ring is shown to be a sum of the `thermodynamic' and `kinetic' contributions both resulting from the electron-electron interaction. The thermodynamic part can be expressed through the diagonal matrix elements of the current operator in the basis of exact many-body eigenstates and is a generalization of the equilibrium persistent current. The novel kinetic part is present only out of equilibrium and is governed by the off-diagonal matrix elements. It has drastically different temperature and magnetic field behavior.Comment: 4 pages RevTeX, two figure

    Spin-Hall effect: Back to the Beginning on a Higher Level

    Full text link
    The phenomena of the spin-Hall effect, initially proposed over three decades ago in the context of asymmetric Mott skew scattering, was revived recently by the proposal of a possible intrinsic spin-Hall effect originating from a strongly spin-orbit coupled band structure. This new proposal has generated an extensive debate and controversy over the past two years. The purpose of this workshop, held at the Asian Pacific Center for Theoretical Physics, was to bring together many of the leading groups in this field to resolve such issues and identify future challenges. We offer this short summary to clarify the now settled issues on some of the more controversial aspects of the debate and help refocus the research efforts in new and important avenues.Comment: 4 pages, Summary of the APCTP Workshop on the Spin-Hall Effect and Related Issue

    Edge spin accumulation in semiconductor two-dimensional hole gases

    Full text link
    The controlled generation of localized spin densities is a key enabler of semiconductor spintronics In this work, we study spin Hall effect induced edge spin accumulation in a two-dimensional hole gas with strong spin orbit interactions. We argue that it is an intrinsic property, in the sense that it is independent of the strength of disorder scattering. We show numerically that the spin polarization near the edge induced by this mechanism can be large, and that it becomes larger and more strongly localized as the spin-orbit coupling strength increases, and is independent of the width of the conducting strip once this exceeds the elastic scattering mean-free-path. Our experiments in two-dimensional hole gas microdevices confirm this remarkable spin Hall effect phenomenology. Achieving comparable levels of spin polarization by external magnetic fields would require laboratory equipment whose physical dimensions and operating electrical currents are million times larger than those of our spin Hall effect devices.Comment: 6 pages, 5 figure
    corecore