88 research outputs found

    Enhanced Vibrational Stability in Glass Droplets

    Full text link
    We show through simulations of amorphous solids prepared in open boundary conditions that they possess significantly fewer low-frequency vibrational modes compared to their periodic boundary counterparts. Specifically, using measurements of the vibrational density of states, we find that the D(ω)∼ω4D(\omega) \sim \omega^4 law changes to D(ω)∼ωδD(\omega) \sim \omega^\delta with δ≈5\delta \approx 5 in two dimensions and δ≈4.5\delta \approx 4.5 in three dimensions. Crucially, this enhanced stability is achieved when utilizing slow annealing protocols to generate solid configurations. We perform an anharmonic analysis of the minima corresponding to the lowest-frequency modes in such open-boundary systems and discuss their correlation with the density of states. A study of various system sizes further reveals that small systems display a higher degree of localization in vibrations. Lastly, we confine open-boundary solids in order to introduce macroscopic stresses in the system which are absent in the unconfined system, and find that the D(ω)∼ω4D(\omega) \sim \omega^4 behavior is recovered.Comment: 12 pages, 11 figure

    Dopamine induces functional extracellular traps in microglia

    Get PDF
    Dopamine (DA) plays many roles in the brain, especially in movement, motivation, and reinforcement of behavior; however, its role in regulating innate immunity is not clear. Here, we show that DA can induce DNA-based extracellular traps in primary, adult, human microglia and BV2 microglia cell line. These DNA-based extracellular traps are formed independent of reactive oxygen species, actin polymerization, and cell death. These traps are functional and capture fluorescein (FITC)-tagged Escherichia coli even when reactive oxygen species production or actin polymerization is inhibited. We show that microglial extracellular traps are present in Glioblastoma multiforme. This is crucial because Glioblastoma multiforme cells are known to secrete DA. Our findings demonstrate that DA plays a significant role in sterile neuro-inflammation by inducing microglia extracellular traps

    Network analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses

    Get PDF
    Network analysis through graph theory provides a quantitative approach to characterize specific proteins and their constituent assemblies that underlie host-pathogen interactions. In the present study, graph theory was used to analyze the interactome designed out of 50 differentially expressing proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, that quantifies the connectedness of a single protein within a milieu of several other interacting proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1’s role in propagating infection its role was also monitored in another RNA virus, Japanese Encephalitis Virus (JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive oxygen species (ROS) generation following viral infection which in the early phase of infection migrated to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was also observed to modulate the viral replication and interferon responses along with low-density lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive role for DJ-1 in neurotropic virus infection in the brain

    Salivary Metabolomics for Oral Precancerous Lesions: A Comprehensive Narrative Review

    Get PDF
    Oral submucous fibrosis (OSMF) is a chronic, potentially malignant disorder of the oral cavity, primarily associated with the consumption of areca nut products and other risk factors. Early and accurate diagnosis of OSMF is crucial to prevent its progression to oral cancer. In recent years, the field of metabolomics has gained momentum as a promising approach for disease detection and monitoring. Salivary metabolomics, a non-invasive and easily accessible diagnostic tool, has shown potential in identifying biomarkers associated with various oral diseases, including OSMF. This review synthesizes current literature on the application of salivary metabolomics in the context of OSMF detection. The review encompasses a comprehensive analysis of studies conducted over the past decade, highlighting advancements in analytical techniques, metabolomic profiling, and identified biomarkers linked to OSMF progression. The primary objective of this review is to provide a critical assessment of the feasibility and reliability of salivary metabolomics as a diagnostic tool for OSMF, along with its potential to differentiate OSMF from other oral disorders. In conclusion, salivary metabolomics holds great promise in revolutionizing OSMF detection through the identification of reliable biomarkers and the development of robust diagnostic models. However, challenges such as sample variability, validation of biomarkers, and standardization need to be addressed before its widespread clinical implementation. This review contributes to a comprehensive understanding of the current status, challenges, and future directions of salivary metabolomics in the realm of OSMF detection, emphasizing its potential impact on early intervention and improved patient outcomes

    Design, formulation and evaluation of sustained release bilayer tablets of ciprofloxacin hydrochloride

    Get PDF
    The present research work involve the development of a bilayer tablet of ciprofloxacin hydrochloride using a superdisintegranting agent (sodium starch glycolate) for the fast releasing layer and hydrophobic polymers like ethyl cellulose, acrycoat L100 and acrycoat S100 for the delayed releasing layer. Ciprofloxacin was used as a model drug. Tablets were prepared by wet granulation method. The prepared bilayer tablets were evaluated for angle of repose, bulk density, tapped density, Carr’s index, Hausner’s ratio at the precompression stage and thickness variation, weight variation, hardness, friability, drug content, disintegration time,  in vitro drug release study at the post compression stage.. In vitro dissolution studies were carried out in a USP 24 apparatus I. In vitro dissolution kinetics followed the Higuchi model via a non-Fickian diffusion controlled release mechanism after the initial burst release. FT-IR studies revealed that there was no interaction between the drug and polymers. Statistical analysis (ANOVA) showed no significant difference in the cumulative amount of drug release after 15 min, but significant difference (p < 0.05) in the amount of drug released after 12 h from optimized formulations was observed. Present research work involves the development of a bilayer tablet of ciprofloxacin hydrochloride using a superdisintegrant for the fast releasing layer and hydrophobic polymers for the delayed releasing layer. There was the initial burst effect from the formulations to provide the loading dose of the drug, followed by sustained release to provide maintenance dose of the drug. Keywords: Superdisintegrants, Burst release, Wet granulation, non-Fickian, Sustained releas

    A Brief Review on the Regulatory Roles of MicroRNAs in Cystic Diseases and Their Use as Potential Biomarkers

    Get PDF
    miRNAs are small endogenous conserved non-coding RNA molecules that regulate post-transcriptional gene expression through mRNA degradation or translational inhibition, modulating nearly 60% of human genes. Cystic diseases are characterized by the presence of abnormal fluid-filled sacs in the body, and though most cysts are benign, they can grow inside tumors and turn malignant. Recent evidence has revealed that the aberrant expression of a number of miRNAs present in extracellular fluids, including plasma or serum, urine, saliva, follicular fluid, and semen, contribute to different cystic pathologies. This review aims to describe the role of different miRNAs in three worldwide relevant cystic diseases: polycystic ovarian syndrome (PCOS), polycystic kidney disease (PKD), and pancreatic cyst tumors (PCTs), as well as their potential use as novel biomarkers.publishedVersio

    Fractional Action Cosmology: Emergent, Logamediate, Intermediate, Power law Scenarios of the Universe and Generalized Second Law of Thermodynamics

    Full text link
    In the framework of Fractional Action Cosmology (FAC), we study the generalized second law of thermodynamics for the Friedmann Universe enclosed by a boundary. We use the four well-known cosmic horizons as boundaries namely, apparent horizon, future event horizon, Hubble horizon and particle horizon. We construct the generalized second law (GSL) using and without using the first law of thermodynamics. To check the validity of GSL, we express the law in the form of four different scale factors namely emergent, logamediate, intermediate and power law. For Hubble, apparent and particle horizons, the GSL holds for emergent and logamediate expansions of the universe when we apply with and without using first law. For intermediate scenario, the GSL is valid for Hubble, apparent, particle horizons when we apply with and without first law. Also for intermediate scenario, the GSL is valid for event horizon when we apply first law but it breaks down without using first law. But for power law expansion, the GSL may be valid for some cases and breaks down otherwise.Comment: 24 pages, 32 figures, Accepted in Int. J. Theor. Phy
    • …
    corecore