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Network analysis reveals common 
host protein/s modulating 
pathogenesis of neurotropic viruses
Sourish Ghosh1, Sriparna Mukherjee1, Nabonita Sengupta1,$, Arunava Roy2,†, Dhritiman Dey2, 
Surajit Chakraborty1, Dhrubajyoti Chattopadhyay2,3, Arpan Banerjee1 & Anirban Basu1

Network analysis through graph theory provides a quantitative approach to characterize specific 
proteins and their constituent assemblies that underlie host-pathogen interactions. In the present 
study, graph theory was used to analyze the interactome designed out of 50 differentially expressing 
proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse 
brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, 
that quantifies the connectedness of a single protein within a milieu of several other interacting 
proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1’s role 
in propagating infection its role  was also monitored in another RNA virus, Japanese Encephalitis Virus 
(JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive 
oxygen species (ROS) generation following viral infection which in the early phase of infection migrated 
to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was 
also observed to modulate the viral replication and interferon responses along with low-density 
lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive 
role for DJ-1 in neurotropic virus infection in the brain.

Identification of key proteins in a host proteome is crucial for targeted therapeutic strategy for neurotropic virus 
infections. Japanese Encephalitis Virus (JEV) and Chandipura Virus (CHPV) (both RNA viruses) have been 
ranked among the potential agents that accounted for over 6000 deaths in the last 6 years in India due to Acute 
Encephalitis Syndrome (AES) (The Indian Express, Mar, 2015). Several previous approaches attempted at target-
ing specific viral proteins involved in CHPV and JEV inflammation or randomly tested drug targets to impede 
the progression of encephalitis disease1–3. Due to this high mutation rate, previous attempts to develop anti-viral 
therapies targeting viral proteins or genes against RNA viruses turned out to be ineffective4–7. Since these viruses 
rapidly multiply within their hosts and lead to encephalitis within 2− 3 days, often the process of identification 
and then deciding on the anti-viral therapy for that particular virus exacerbates the situation. In addition, often 
multiple RNA viruses infect the same host8–10. Thus, modern approaches in developing anti-viral therapies rely 
on understanding the host system which the RNA viruses manoeuvre to facilitate their survival11,12. Since most of 
these rapidly multiplying RNA viruses do not integrate themselves with the host genome and prefer to utilize the 
host proteins, it is reasonable to analyze the host proteome to “fish out” those “common” proteins and pathways 
on which these viruses depend in order to frame a common therapeutic strategy against these viruses.

Traditional protein-protein interaction (PPI) studies related to host-viral interactions attempted at studying 
these interactions in isolation13,14. Studying PPI in isolation i.e. interaction of individual proteins with a particular 
viral protein, ignores the global effect of the virus in the host. Systems biology approaches have been applied to 
reveal systematic trends in host-pathogen interaction networks, e.g., viruses tend to target host protein interac-
tion hubs15. Although this approach helps in analyzing the role of a group of host proteins in a viral pathogen-
esis, it nonetheless fails to screen the important protein/s that should be therapeutically targeted. Prioritization 
algorithms have been applied of late to find an answer to this problem16. One can take measures of graph theory 
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to address this issue, e.g., degree centrality assigns a score to each node based on their connectivity within the 
network. The node with the highest degree centrality score is considered to be the most important node within 
that network. Moreover it has been observed that the node with highest degree centrality in a complex network 
holds its strategic position even if the network is expanded17.

In our present approach we tried to “fish out” the strategic host protein in the infection pathway and validate 
its role in neuropathogenesis. We specifically targeted CHPV and JEV in order to propose a common therapeutic 
strategy. Primarily we identified a set of host proteins that get differentially modulated by CHPV infection in an 
established mouse infection model. The identified proteins were mapped into a PPI network to develop an inter-
actome. Applying parameters of graph theory such as degree centrality to the derived interactome, we were able 
to identify the importance of DJ-1 upregulation in mediating infection.

Protein deglycase or DJ-1 has been implicated to have a neuroprotective role in sporadic cases of Parkinson’s 
disease and other neurodegenerative disease18. Reduced mitochondrial complex-1 activity accompanied by 
increased oxidative stress has been reported to recruit DJ-1 to mitochondria following either depolarization of 
the mitochondrial membrane or increased cellular oxidative stress19. DJ-1 has been reported to play critical role in 
various other processes like transcriptional regulation, chaperone activities, apart from its regulatory role in ROS 
generation20. One of the important transcriptional regulatory roles of DJ-1 has been in co-activating low-density 
lipoprotein receptor (LDLR) transcription along with Sterol Regulatory Element Binding Protein-2 (SREBP-2)21. 
Triggering of oxidative stress, mitochondrial dysfunction and mitophagy following viral infections are common 
events. In our present venture we tried to explore the role of DJ-1 in case of neurotropic virus infection in neu-
rons. Our investigation revealed the upregulation of DJ-1 during neurodegeneration following CHPV and JEV 
infection. Also as previously reported LDLR play important role in CHPV infection22, we were inquisitive to 
know that whether DJ-1 has a regulatory effect on LDLR in neurons and hence modulates the life cycle of both 
CHPV and JEV.

Results
Bioinformatic analysis of protein networks to identify key host protein/s. 500 μ g of protein from 
whole brain was isolated from CHPV infected mouse. Along with its mock-infected counterpart the protein 
sample obtained from CHPV infected mouse brain was subjected to 2-Dimensional Electrophoresis (2-DE) 
(pH range =  5.0–8.0). 53 differentially expressing protein spots were identified and excised from the gel with the 
help of PD Quest 2 Dimensional (2D) Analysis software and analyzed with Matrix Assisted Laser Desorption/
Ionization (MALDI) (ratio CHPV/mock ≥  |1.5|, using paired Student t-test analysis p <  0.05, spots shown in 
Fig. 1a). Out of the 53 identified spots 50 proteins were identified through MALDI analysis (3 proteins accession 
numbers: Q01853, Q9CZ13, P05063 were repetitions) (Tables S.1 and S.2). 17 proteins were identified to have 
been down-regulated while the rest out of 50 proteins were up-regulated as depicted in Table. S.2.

An interactome model was developed out of the 50 identified proteins with the help of Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING) 10.0 online database (http://string-db.org/). Proteins were 
classified in their respective modules or compartments and arranged in a descending order of “degree centrality” 
score (Table 1). Modularity is a graph theoretic parameter that defines to what extent a network can be subdivided 
into subnetworks or modules based on the connectivity of the nodes pertaining to a particular network. The 
modularity score that ranges between [− 0.5, 1] denotes that a network is said to be modular as its corresponding 
modularity score approaches 1. Another important property of graph theory that we utilized in our network 
analysis is that of “degree centrality”. “Degree centrality” defines the connectivity of each node in a particular net-
work. A node that is having the highest interaction within a network possess the highest degree centrality score. 
Modularity score of the interactome was 0.17. 3 modules were identified out of the analysis with Module 1 being 
the largest consisting of 22 proteins while Modules 2 and 3 consisted of 18 and 10 members, respectively (Fig. 1b 
& Table 1). Node number 1 (DJ-1) that belonged to the Module 2 was having the highest “degree centrality” 
score of 1.987 in the interactome (Table 1). This implied that DJ-1 interacted with most of the other proteins in 
the interactome and holds a strategically important position in the network. Hence DJ-1 was selected for further 
analysis to determine its role in CHPV life cycle through molecular validation studies23–25.

Scrutinizing the role of DJ-1in CHPV infection in neurons. Significant up-regulation was observed in 
mRNA levels of DJ-1 in CHPV 4 days post infection (dpi) mouse brain samples (fully symptomatic) and CHPV 
12 hours post infection (hpi) neuronal cell line (p <  0.01) (Fig. 2a). A time-based experiment was conducted to 
monitor the expression of DJ-1 in the course of CHPV infection in both in vivo and in vitro models of infection 
through immunoblot analysis. DJ-1 showed an increase in expression in the initial phase of infection in both the 
cases (p <  0.01) (Fig. 2b). DJ-1 expression was also observed to increase in the mock infected samples of 12 hpi 
neuronal cell line and densitometric analysis showed a comparable fold change to the CHPV infected samples. 
This may be due to prolonged exposure to serum free media resulting into oxidative stress in mock samples. 
However this result does not affect our hypothesis that DJ-1 expression is an early response to the viral infection26. 
Immunohistochemistry analysis concomitantly showed enhanced co-localization of DJ-1 expression in neurons 
in 2 dpi CHPV infected brain sections in comparison to 4 dpi samples (Fig. 2c).

Cycloheximide (Cxd) has been known to shut down eukaryotic translation27. We utilized this chemical to vali-
date our hypothesis that CHPV infection induces DJ-1 expression as an early response. Pre-treating Neuro2A cells 
with Cxd blocked the viral replication (CHPV P protein) within the cell and DJ-1 expression (p <  0.01) (Fig. 2d and 
S1). However Cxd treatment 2 hpi of CHPV infection did not have any effect in viral replication or DJ-1 expression.

Oxidative stress induces DJ-1 expression post CHPV infection. 2′ ,7′ –dichlorofluorescin diace-
tate (DCFDA) staining was performed to measure the reactive oxygen species (ROS) level through the course 
of CHPV infection in Neuro2A cells (p <  0.01) (Fig. 3a). ROS activity increased after 3 hours of infection that 
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explains the triggering of DJ-1 expression at 6 hpi shown in Fig. 2b. To validate the increase in ROS activity is 
the triggering factor for neuronal apoptosis, cells were pre-treated with N-acetyl cysteine (NAC) before CHPV 
infection. As evident from Fig. 3b, cells evaded apoptosis in spite of CHPV infection. Increase in ROS activity is 

Figure 1. (a) Protein was isolated from CHPV infected and mock infected brain samples and subjected 
to 2-DE. 53 differentially expressed spots were identified and analyzed by MALDI for identification of the 
proteins. The 2-DE blot images in this figure depict the 53 spots identified from both CHPV and mock infected 
brain protein samples. (b) Modular network formed using 50 proteins identified from MALDI analysis. A PPI 
network was developed using STRING 10.0 database. The interactions were analyzed using VisualConnectome 
toolbox in MATLAB that yielded 3 modules with a significant modularity score of 0.17 (against random 
network modularity score 0.09). The nodes in the figure represent the individual proteins while the edges 
represent the interactions between the nodes (proteins) based on confidence score. The edges were coloured 
based on the confidence score (with deep blue correlating to high confidence score and lighter shades of blue to 
lower confidence scores). Based on the degree centrality parameter DJ-1 node was determined to be the most 
interactive protein of the interactome model denoted by orange colour.
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generally connected with oxidative stress and mitochondrial dysfunction. DJ-1 translocation to mitochondria 
was observed in Fig. 3c while in case of NAC treated samples there was no expression of DJ-1 (p <  0.01). In 
another control experiment to verify that DJ-1 expression is a response to increase in ROS activity, we treated 
Neuro2A cells with 30 μ M of H2O2 that is known to induce ROS activity (concentration was determined through 
MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) Assay 
shown in Fig. 3d). Significant increase in mRNA levels of DJ-1 was observed in H2O2 treated cells compared to 
their corresponding control samples (p <  0.01) (Fig. 3e). These evidences collectively strengthen our hypothesis 
that DJ-1 over-expression is attributed to rise in ROS activity following CHPV infection. Moreover NAC treat-
ment has been observed to reduce CHPV replication that signifies ROS activity and following DJ-1 expression has 
important roles to play in the viral life cycle (Fig. 3f).

Oxidative stress has been related to mitochondrial dysfunction in several reports19,28–30. Cells have an inherent 
property to remove dysfunctional organelles through a process called autophagy and the term “mitophagy” is 
coined especially in case of removal of dysfunctional mitochondria through autophagy31. In case of CHPV infec-
tion of neurons, mitophagy was evidenced with significant over-expression of LC3B (Microtubule-associated pro-
tein 1A/1B-light chain 3 conjugated with phosphatidylethanolamine) an autophagic marker (p <  0.05) (Figs 4a 
and S2). As shown in Figs 4a & S3, DJ-1 over-expression in mitochondria following ROS activity signifies trans-
location of DJ-1 into mitochondria in response to oxidative stress (p <  0.01). DJ-1 has a regulatory role in main-
taining the mitochondrial health. During oxidative stress DJ-1 has been previously reported and evidenced in our 
experiments, to enter mitochondria to remove dysfunctional mitochondria through mitophagy19.

JC-1 (5, 5′ , 6, 6′ -tetrachloro-1, 1′ , 3, 3′ -tetraethylbenzimidazol-carbocyanine iodide) is a lipophilic fluorescent 
cation that distinguishes energized from de-energized mitochondria which infers the health of the cells. JC-1 in 
monomeric form emits green fluorescence when excited with a light of wavelength ~488nm but in a healthy cell 
it can get incorporated into the mitochondrial membrane forming J-aggregates due to the physiological mem-
brane potential of mitochondria and its fluorescence shift from green to orange-red. Due to oxidative stress the 
mitochondrial potential reduces and the J-aggregates disassociate to release JC-1 in monomeric forms into the 
cytoplasm shifting fluorescence from orange-red to green again32. We utilized this molecule to determine the 
mitochondrial potential through the course of CHPV infection in neurons. The panel images show the mainte-
nance of the potential at 6 hpi indicating that 83% of the total gated cell population is emitting red fluorescence. 
This is attributed to the regulatory role played by DJ-1 in spite of high ROS generation (Fig. 4b). But, at 12 hpi 
the mitochondrial potential declines and the healthy cell population declines further to 61% as supported by the 
expression of LC3B, marking the onset of mitophagy.

The phenomenon of mitophagy following CHPV infection has been further analyzed with the help of a novel 
fluoroprobe MitoSOX Red. MitoSOX Red is a live-cell permeant probe that selectively targets mitochondria and 
exhibits bright red fluorescence when oxidized by increasing superoxides which is an indicator of mitochondria 
undergoing mitophagy33. MitoSOX fluorescence increased with the progression of CHPV infection indicating the 
increase in the number of mitochondria undergoing mitophagy following infection (p <  0.05, p <  0.01) (Fig. 4c). 

Module 1 Module 2 Module 3

Protein 
Symbol

Degree Centrality 
(Z score)

Protein 
Symbol

Degree Centrality 
(Z score)

Protein 
Symbol

Degree Centrality 
(Z score)

ACTB 1.69249 DJ-1 1.987414 Eif1ax 1.769303

HSPA5 1.69249 SOD1 1.926947 Ranbp1 0.884652

ENO2 1.306135 Ppa1 1.179751 ENO1 0.884652

PPIA 1.085096 TPI1 1.179751 ITPA 0.442326

YWHAG 0.864058 PRDX6 0.674144 Cmpk1 0

ALDOC 0.864058 UQCRC1 0.674144 TBCA − 0.44233

DPYSL3 0.200944 PGAM1 0.674144 Rps12l1 − 0.44233

TUBB2B 0.200944 COX5A 0.168536 RBM3 − 0.44233

DPYSL2 0.200944 PEBP1 0.168536 Polr2a − 1.32698

VIME − 0.02009 VCP 0.168536 TULP4 − 1.32698

ERP29 − 0.02009 PGK2 0.168536

CKB − 0.24113 HINT1 0.168536

TAGL3 − 0.24113 PSMA2 0.168536

STIP1 − 0.46217 IDH1 − 0.33707

LMNB1 − 0.68321 APOA1 − 1.34829

FABP7 − 0.68321 BTRC − 1.60109

Pfn2 − 0.68321 Mpst − 1.85389

Eif4h − 0.68321 HEBP1 − 1.85389

HNRH1 − 0.90425

STMN1 − 1.12529

GRB2 − 1.12529

F161B − 1.7884

Table 1.  Protein Distribution & Degree Centrality Score from Modularity Analysis.
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Figure 2. CHPV infection stimulates DJ-1 expression.  Representative graph demonstrates the mRNA 
expression of DJ-1 in mouse brain and Neuro2A cell line. (a) Immunoblot images show the expression levels of 
DJ-1 in both mouse brain and Neuro2A samples observed in a time-dependent analysis. (b) In both the cases β 
-actin was used as a loading control. Co-expression of NeuN (neuronal marker) and DJ-1 was analyzed using 
immunohistochemistry from mouse brain sections obtained from time-dependent study of CHPV infection in 
mouse. Representative panel images demonstrate the results of immunohistochemistry analysis. (c) Scale =  10 μ m. 
Cxd (100 μ g/ml) can effectively shutdown the translational machinery of eukaryotic cells. Expression levels of DJ-1 
and CHPV P protein was determined using immunoblot analysis at various time-dependent treatment conditions 
using proper experimental controls. (d) β -actin was used as a loading control. *represents p <  0.05 and #represents 
p <  0.01. (n =  3).
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Figure 3. ROS activity triggers DJ-1 expression. DCFDA staining of Neuro2A cells in a time-dependent study 
of CHPV infection was performed by flow cytometry analysis and the results were quantified as represented by 
histogram plot and graph. (a) The analysis did not involve any gating with a total 10000 event count for each sample. 
NAC was used as a negative control in the experiment as it is known for its anti-oxidant property. Phase contrast 
microscopic images compare cell morphology of Neuro2A cells pre-treated with NAC (5 μ M) 2 h before CHPV 
infection against mock infected and CHPV infected cells. (b) Scale =  50 μ m. Immunoblot image shows the expression 
levels of DJ-1 in CHPV infected Neuro2A mitochondria 6 hpi using NAC as a negative control in the experiment. (c) 
HSP60 was used as loading control. Working concentration of H2O2 was determined using MTS assay that reported 
50% viability of cells at 30 μ M. (d) 30 μ M of H2O2 was used to treat Neuro2A cells to monitor the mRNA expression 
level of DJ-1 (e). Representative graph shows mRNA level expression of CHPV P protein in NAC treated Neuro2A 
cells (f). *represents p <  0.05 and #represents p <  0.01. MFI =  Mean Fluoroscence Intensity, (n =  3).
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The mock infected cells in the image panel clearly shows no fluorescence inside the cells while the fluorescence 
went on increasing as the cells infected with CHPV accumulated more number of dysfunctional mitochondria.

DJ-1 facilitates survival of CHPV in neurons. We analyzed the mitochondrial health with the help of JC-1 
staining in various sample groups: mock infected, CHPV 12 hpi, CHPV infection in DJ-1 over-expressing cells 
and CHPV infection in DJ-1 knockdown cells. Figure 5a clearly indicates more number of cells are undergoing 
mitochondrial depolarization in DJ-1 over-expressing cells infected by CHPV compared to other groups, while in 
absence of DJ-1, cells maintained the population of healthy mitochondria albeit infected by CHPV. Further modu-
lation in DJ-1 expression affected CHPV replication and interferon response (e.g. IFN α  and β ) in CHPV infected 
cells as evident from Fig. 5b. It was observed that DJ-1 over-expression supported the CHPV replication indicated 
by increased mRNA expression level of CHPV P (phosphoprotein) protein in comparison to DJ-1 knockdown 
cells (p <  0.01). The α /β  interferon (IFN) system, consisting of IFN-β  and the IFN-α  family, represents a crucial 
defence element of higher organisms that activate both innate and adaptive immunity in response to viral infec-
tion34. mRNA level expression of both the IFNs were observed to increase significantly in the early phase of infec-
tion i.e. 6 hpi in DJ-1 over-expressing cells infected with CHPV in comparison to DJ-1 knockdown cells (p <  0.01).

Previously we have reported that CHPV perturbs the cholesterol homeostasis in brain by manipulating neu-
rons to import more cholesterol from astrocytes in order to expedite the process of viral assembly22. LDLRs 
mediate this entry of cholesterol within neurons. In the present study we observed a significant decline in the 
expression levels of both CHPV P protein (p <  0.01) (Fig. 6a) and LDLR (p <  0.01) (Fig. 6a,b) in DJ-1 knock-
down samples following CHPV infection. On the other hand when DJ-1 was over-expressed in Neuro2A cells, 
an increase in LDLR was observed (p <  0.01) (Fig. 6c). The over-expression of LDLR was further validated when 
CHPV was infected in DJ-1 over-expressing cells (p <  0.01) (Fig. 6d). Referring to the previous results we can 
infer that CHPV infection, ROS generation, mitophagy and DJ-1 expression are not isolated events. Moreover 
DJ-1 through our experiments and observations may be implicated in playing vital role in CHPV life cycle in 
neurons.

Figure 4. DJ-1 over-expression initiates mitophagy.  Immunoblot image shows the expression of DJ-1 and 
LC3B in mitochondria from a time-dependent study of CHPV infection of Neuro2A. (a) HSP60 was used as 
loading control. JC-1 staining indicates the mitochondrial membrane potential. Representative figures show 
JC-1 staining with the help of flow cytometric analysis from a time-dependent analysis of CHPV infection 
of Neuro2A cells. (b) The representative plots were a result of gating: Mock Infected =  6075 events, CHPV 
6hpi =  5976 events and CHPV 12hpi =  5903 events out of total 10000 events. The percentages mentioned in the 
panels (percentage of the gated events mentioned previously) quantify the number of cells having majority of 
mitochondria in polarized state (red) and in depolarized state (green) simply interpreting the oxidative stress 
condition of the cells. MitoSOX Red staining determines the mitochondrial superoxide production which is a 
hallmark of mitophagy. The representative image panels show MitoSOX Red staining from a time-dependent 
analysis of CHPV infection of Neuro2A cells. (c) Scale =  50 μ m. Corresponding graph indicates the absorbance 
of MitoSOX Red staining at 510 nm for various time-dependent analysis of CHPV infection of Neuro2A cells. 
*represents p <  0.05 and #represents p <  0.01. (n =  3).
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DJ-1 modulates the LDLR expression in JEV infection. The ROS activity showed significant rise in 
levels in 6 and 12 hpi from culture media of Neuro2A cells infected with JEV (p <  0.01) (Fig. 7a). In response 
to increase in ROS activity we monitored the mitochondrial DJ-1 and LC3B expression levels by immunoblot 
analysis that indicated rise in the early phase of infection of JEV (p <  0.01) (Fig. 7b). Similarly as in case of 
CHPV, DJ-1 showed an enhanced level of expression in the early phase of JEV infection in cytoplasm analyzed 
through immunocytochemistry (Fig. 7c) and immunoblot (p <  0.01) (Fig. 8a). Immunocytochemistry analysis 
marks the co-localization of DJ-1 expressing neurons with JEV marker signifying that DJ-1 expression takes 
place in response to JEV infection. Hence we can infer that both these neurotropic viruses CHPV and JEV induce 
the increase in ROS activity upon infecting neurons and influences the translocation of DJ-1 from cytoplasm to 
mitochondria to bring about mitophagy.

LDLR expression levels were observed to increase significantly in a time-dependent infection study for 
JEV analyzed through immunoblot analysis (p <  0.01) (Fig. 8a,b). As in case of CHPV, DJ-1 was also found to 
facilitate the replication of JEV as significant increase in the mRNA levels of JEV GP78 was recorded in DJ-1 
over-expressing cells compared to RNA extracted from DJ-1 knockdown cells (p <  0.01) (Fig. 8b). Similarly 
mRNA expression levels of IFN α  and β  were also observed to increase at an early stage of infection in JEV 
infected DJ-1 over-expressing cells compared to JEV infected DJ-1 knockdown cells (p <  0.01) (Fig. 8b).

Discussion
CHPV (negative single stranded RNA virus) and JEV infection (positive single stranded RNA virus) induce 
neurodegeneration leading to mortality. Our group has established infection models for both these viruses. In 
case of CHPV infection, 10 day post-natal BALB/c mice developed encephalitis symptoms within 72–96 hpi on 
inoculation through the intra-peritoneal (i.p.) route and hence succumbed to infection35. On contrary, the infec-
tion model for JEV was established in adult BALB/c mice (4–6 weeks) that developed encephalitis symptoms 
5 dpi inoculating through the same route36. Both these viruses are arboviruses and are neurotropic, while JEV 
belongs to the family Flaviviridae, CHPV belongs to the family Rhabdoviridae. Albeit the viruses differ in their 
genomic structures, there are reports that postulate RNA viruses utilize “common” host metabolic pathways for 
their propagation inside their hosts37,38.

Figure 5. Role of DJ-1 expression in CHPV infected cells.  Oxidative stress condition of DJ-1 over-expression 
and knockdown cells post CHPV 12 hpi were analyzed by JC-1 staining with the help of flow cytometric analysis 
compared to wild type cells that is illustrated in the representative figures. (a) The representative plots were a 
result of gating: Mock Infected =  8065 events, CHPV 12hpi =  7853 events, DJ+ + /CHPV 12hpi =  7513 and DJ− − 
/CHPV 12hpi =  8200 events out of total 10000 events. The percentages mentioned in the panels (percentage of the 
gated events mentioned previously) quantify the number of cells having majority of mitochondria in polarized 
state (red) and in depolarized state (green). Representative graphs show mRNA expression levels of IFN- α  & β, 
DJ-1 and CHPV P protein in case of DJ-1 knockdown and over-expression in Neuro2A cells compared to their 
mock treated samples. (b) *represents p <  0.05 and #represents p <  0.01. (n =  3).
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In our present study we identified DJ-1 to be one of the key players in CHPV pathogenesis through our 
bioinformatics-based analysis and later on through molecular validation studies. DJ-1 that is implicated to have 
a neuroprotective role in case of sporadic cases of Parkinson’s disease and other neurodegenerative disease got 
up-regulated in the viral infected neurons case of CHPV infection. In the initial phase of infection, the neuropro-
tective role of DJ-1 was observed where it initiated the process of mitophagy in response to increase in ROS activity 
(Figs 3, 4 and 5). But prolonged ROS activity induced DJ-1 to activate the process of LDLR transcription (Fig. 6). 
Thus, ROS and DJ-1 together mediate the initiation of infection cascade. LDLR over-expression in neurons infected 
by viruses stimulated the import of cholesterol from astrocytes as reported in one of our previous publication facil-
itating the viral assembly and budding in neurons22. JEV which is also an enveloped virus was hypothesized to use 
similar host machinery for deriving its envelope from the host. As per the results obtained from Figs 7 and 8, we 
proved our hypothesis that DJ-1 also plays an important role in JEV pathogenesis within neurons. Hence DJ-1 may 
be proposed as an effective common therapeutic target against both CHPV and JEV infection.

As per our findings, cholesterol forms an important component in CHPV life cycle since it helps to form the 
viral envelope in the assembling and budding phase. Thus in order to search for the host factor/s that influences 
the perturbation in cholesterol homeostasis and hence neuronal death, whole brain proteome analysis was per-
formed for CHPV infected sample. Proteomic analysis generally provides a huge dataset that becomes difficult 
to analyze. Modern approaches of systems biology with the incorporation of mathematical modelling have been 
useful in analyzing such “big data”39. Through our proteomic analysis we identified 50 proteins which got differ-
entially expressed in case of CHPV infection (Fig. 1). Subsequently, we utilized the measures of graph theory to 
analyze and quantitate the role of specific protein modules in the interactome formed by 50 identified proteins 
(nodes).

Degree centrality is a measure in network analysis that defines the connectivity and the importance each node 
is having in a particular network. Centrality measure has been previously utilized in prioritization of proteins (i.e. 
ranking the nodes/proteins in a network depending on their strategic importance within that network) in case of 
complex PPI networks40. Conventionally centrality has been classified into: (1) degree centrality, (2) closeness, (3) 
betweenness and (4) eigen centrality. We have previously established that degree centrality is an effective measure 
in protein prioritization and has been observed to be consistent over larger networks17. Hence the “degree central-
ity” parameter was chosen to quantitate the contribution of a particular node within a network. Table 1 showed 
that DJ-1 was having the highest degree centrality score of 1.987 in the interactome. We explored the potential 
role of DJ-1 in the context of CHPV infection in neurons since CHPV selectively replicates in neurons of Central 
Nervous System (CNS)22.

Figure 6. DJ-1 modulates the expression of CHPV P protein and LDLR. Immunoblot image exhibits the 
expression levels of DJ-1, CHPV P protein and LDLR in case of DJ-1 knockdown Neuro2A cells CHPV 12 hpi 
along with proper experimental controls. (a) β -actin was used as a loading control. mRNA level expression of 
LDLR showed significant decrease in DJ-1 knockdown cells. (b) Immunoblot image shows the expression levels 
of DJ-1 and LDLR in case of DJ-1 over-expression in Neuro2A cells. (c) β -actin was used as a loading control. 
Supporting the immunoblot image result LDLR mRNA expression was observed to increase significantly in 
DJ-1 over-expressed cells post CHPV infection (d). *represents p <  0.05 and #represents p <  0.01. (n =  3).
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DJ-1 has been implicated in several neurodegenerative diseases especially in the sporadic cases of onset of 
Parkinson’s disease41. Enhancement of DJ-1 in cells in case of neurodegenerative diseases have been reported 
to be in response to an increase in oxidative stress28. Complying with the previous reports oxidative stress was 
evidenced in both CHPV and JEV infection by increase in ROS activity. Treatment with NAC reversed the effect 
of ROS activity evading neuronal apoptosis and DJ-1 over-expression (Fig. 3). Again treatment with Cxd (that 
blocks the translational machinery of the cells) clearly showed that CHPV replication is correlated with expres-
sion of DJ-1 (Fig. 2). Hence the results comprehensively prove that the process of viral replication stimulates the 
ROS production and up-regulation of DJ-1.

Figure 7. Validation of the proposed hypothesis in JEV infection.  DCFDA staining of Neuro2A cells 
in a time-dependent study of JEV infection was performed by flow cytometry analysis and the results were 
quantified as represented by histogram plot and graph. (a) The analysis did not involve any gating with a total 
10000 event count for each sample. N-acetylcysteine (NAC) was used as a negative control in the experiment as 
it is known for its anti-oxidant property. Immunoblot images in (b) exhibits the expression levels of DJ-1 and 
LC3B in mitochondria from a time-dependent study of JEV infection. HSP60 were used as loading control for 
the immunoblot analyses. Co-expression of JEV Nakayama (JEV virus marker) and DJ-1 was analyzed using 
immunocytochemistry from JEV 24 hpi infected Neuro2A cells. Representative panel images demonstrate 
the results of immunocytochemistry analysis. (c) Scale =  10 μ m, #represent p <  0.01. MFI =  Mean Fluoroscent 
Intensity. (n =  3).
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Several reports have been published over the years that associate the process of viral replication and ROS 
production in cells but the exact mechanism is still elusive42. RNA viruses on entering the cell try to hack the 
host metabolic machinery and in the process interfere with the cell’s ROS system. Mitochondrial DNA (mtDNA) 
encodes for 13 polypeptides, 2 ribosomal RNA (rRNA) and 22 transfer RNA (tRNA)43. Enhanced ROS produc-
tion directly targets the mtDNA and affects the production of all these byproducts that contribute to the proper 
functioning of the electron transport chain leading to mitochondrial dysfunction. While other theories state 
that manipulation of protein folding and assembly machinery of Endoplasmic Reticulum (ER) lead to ER stress 
perturbing the calcium homeostasis. Calcium ion (Ca2+) under normal physiological condition activates the 
mitochondrial metabolism but in altered condition switch from a physiological beneficial process to a cell death 
signal44. Hence mitochondrial dysfunction or a newly coined term “mitophagy” is quite pronounced in case of 
uncontrolled ROS production.

Mitophagy was evidenced in case of CHPV infection in Fig. 4 that showed over-expression of autophagy 
marker LC3B (whose role was also monitored in case of JEV infection), decrease in mitochondrial potential and 
MitoSOX Red fluorescence at 12 hpi. DJ-1 has been previously reported to associate with Parkin and Pink-1 for 
regulating mitochondrial function and mitophagy in response to oxidative stress18. Our present result shows that 
DJ-1 up-regulates at 6 hpi and induces mitophagy at an early phase of infection (JC-1 staining Figs 3–5). Hence 
the prominent role played by DJ-1 in CHPV and JEV infection proved through molecular studies validates the 
selection of DJ-1 through graph theoretic analysis.

Ablation of DJ-1 enhances the ROS activity and induces a faster rate of mitophagy45. Contrary to the 
reports46,47, knockdown of DJ-1 in case of CHPV infection alleviated neuronal health and decreased the num-
ber of dysfunctional mitochondria while DJ-1 over-expression stimulated mitophagy (Fig. 5a). Surprisingly 
the replication of both CHPV and JEV was found to be affected by DJ-1 knockdown and potentiated by DJ-1 
over-expression (Figs 5b and 8b). In addition to this, interferon response to the viral infection was observed 
to get modulated by DJ-1, in case of both these viruses (Figs 5b and 8b). Moreover as discussed earlier, Cxd 
pre-treatment of cells, blocked CHPV P protein expression along with DJ-1. Hence it may be hypothesized that 
DJ-1 must be playing a vital role in both CHPV and JEV life cycle that was facilitating the survival of these neu-
rotropic viruses within neurons.

Following our previous finding that LDLR facilitated the import of cholesterol into neurons from astrocytes 
which helps in the propagation of CHPV, LDLR expression got affected by DJ-1 expression (Fig. 6). While, 

Figure 8. Role of DJ-1 in JEV infected cells. Expression levels of DJ-1 and LDLR are represented in the 
immunoblot image in a time-dependent study of JEV infection of Neuro2A cells. (a) β -actin was used as a 
loading control. Representative graphs show mRNA expression levels of IFN- α  & β , DJ-1, LDLR and JEV 
GP-78 protein in case of DJ-1 knockdown and over-expression in Neuro2A cells compared to their mock 
treated samples. (b) *represents p <  0.05 and #represents p <  0.01. (n =  3).
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over-expression of DJ-1 following CHPV and JEV infection enhanced LDLR expression, knockdown of DJ-1 
diminished the same (Figs 6 and 8). Hence through our observations in both the viruses it may be hypothesized 
that DJ-1 expression modulates LDLR expression that further affects the propagation of the neurotropic viruses. 
The mechanism of DJ-1 modulation of LDLR has been further discussed in the Supplementary Information.

In summary, DJ-1 plays a critical role in pathogenesis of both CHPV and JEV infection in neurons. Viral rep-
lication in neurons triggers ROS activity in response to which DJ-1 over-expresses in the initial phase of infection 
to prevent inflammation. Thus, DJ-1 has a neuroprotective role attributed to its anti-oxidant property. In the ini-
tial phase of infection, DJ-1 induces mitophagy in response to viral infection. Prolonged infection causes uncon-
trolled release of ROS in response to which DJ-1 activity also increases. DJ-1 triggers the transcription of LDLR. 
As reported previously, enhanced expression of LDLR increases the import of excess cholesterol in neurons from 
astrocytes that is utilized by CHPV for its envelope formation. The entire mechanism has been described in a 
schematic representation in Fig. 9. Another aspect that comes up from our research is that both JEV and CHPV 
adapt a similar mechanistic approach in neuronal infection. It would be of interest to explore whether other  
neurotropic RNA viruses also adapt a similar approach.

Materials and Methods
Ethics Statement. All animal experiments were approved by the Institutional Animal and Ethics Committee 
(IAEC) of the National Brain Research Centre (approval no. NBRC/IAEC/2012/70). The animals were handled 
in strict accordance with good animal practice as defined by the Committee for the Purpose of Control and 
Supervision of Experiments on Animals (CPCSEA), Ministry of Environment and Forestry, Government of India.

Virus and cells. CHPV (strain no. 1653514 isolated from human patient in Nagpur, 2003) was propagated 
in Vero cell line22,48. The titer of the virus was found to be 3 ×  105 plaque forming units (pfu)/ml. Neuro2A and 
Vero cells (Vero cells were a kind gift from Prof. Debiprasad Sarkar, Dept of Biochemistry, University of Delhi 
South Campus, India) were grown at 37 °C in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 
3.5% sodium bicarbonate, 10% fetal bovine serum (FBS) and penicillin/streptomycin (Sigma Aldrich, St. Louis, 
MO, USA).

GP78 strain of JEV was propagated in suckling BALB/c mice and their brains were harvested when patholog-
ical symptoms were observed. Virus titrations were conducted and quantified as described earlier49.

Animal treatment. BALB/c mouse pups of 10 post natal days were used for the experiments and always kept 
with mother for milk feeding. The animals were divided into two groups- mock and CHPV-infected (irrespective 
of sex since CHPV infects without any sexual bias). CHPV group was injected with 50 μ l of virus (approximately 
1.5 ×  104 pfu) while the mock infected animals were injected with a similar volume of Phosphate buffer solution 
(PBS) through i.p. route. CHPV-infected animals succumbed by 76− 92 hpi. Animals of mock infected group 
were also sacrificed at the same time. Brains were excised after repeated transcardial perfusion with ice-cold 1X 
PBS followed by tissue fixation using 10% paraformaldehyde (PFA) (Sigma Aldrich, St. Louis, MO, USA).

Figure 9. Schematic diagram representing the possible role of DJ-1 in CHPV infection. CHPV replication 
stimulates the release of ROS in neurons. Increase of ROS in cytoplasm induces the over-expression of DJ-1 that 
translocates in mitochondria to induce mitophagy signified by the expression of LC3B. DJ-1 over-expression 
in response to ROS activity influences migration of both DJ-1 and SREBP-2 into nucleus. DJ-1 co-activates 
SREBP-2 to bind to the SRE binding site of LDLR promoter and regulate the expression of the later. LDLR over-
expression favours import of cholesterol into neurons facilitating CHPV assembly.
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Infection and treatment of Neuro2A cells. Neuro2A cells were cultured in serum containing medium 
till 70 to 80% confluence, followed by differentiation in serum-free medium. Cells were then either mock infected 
(PBS of equal volume as that of virus) or infected with CHPV at a multiplicity of infection (MOI) of 0.1 and kept 
in incubation for 2 hours. Post-infection, cells were washed thrice with sterile 1×  PBS to remove non-internalized 
virus and were incubated for different time periods in serum-free medium. JEV infection was also applied in a 
similar manner with a MOI of 5.

N-acetylcysteine (NAC) Treatment. 5 μ M of NAC (Sigma Aldrich, St. Louis, MO, USA) was administered in the 
culture plates of Neuro2A, 2 hours before infecting with virus.

Cycloheximide (Cxd) Treatment. 100 μ g/ml of Cxd (Sigma Aldrich, St. Louis, MO, USA) was administered both 
prior and after two hours of CHPV infection to Neuro2A separately to observe the effect.

H2O2 Treatment. 30 μ M of H2O2 (Sigma Aldrich, St. Louis, MO, USA) (determined through MTS assay as 
described previously35) was administered to Neuro2A to induce intracellular ROS generation.

Transfection of Neuro2A. 10 μ M of DJ-1 esiRNA (Endoribonuclease-prepared siRNA) (Sigma Aldrich, St. Louis, 
MO, USA) or 1 μ g of pRK5-mouse-DJ1-HA (was a gift from Dr. Mark Cookson, National Institute on Aging, 
National Institutes of Health, Bethesda)50 plasmid was used for transfection using Lipofectamine (Invitrogen, 
Carlsbad, CA, USA) according to the manufacturer’s protocol. Briefly, Neuro2A cells were seeded and maintained 
in sets of three at 37 °C and 5% CO2 and when the cells were 70% to 80% confluent, they were transfected in 
Opti-MEM (Invitrogen, Carlsbad, CA, USA) for 6 hours after which fresh 5% DMEM was added to the cells for 
24 hours. While DJ-1 esiRNA was used to knockdown the expression of DJ-1, pRK5-mouse-DJ1-HA was used to 
over-express DJ-1 in Neuro2A cells.

Plaque Assay for determining pfu/ml of CHPV and JEV. Briefly, Vero cells were seeded in six-well 
plates to form confluent monolayer. Cell monolayer were inoculated with 10-fold serial dilutions of supernatant 
samples made in Minimal Essential Medium (MEM) containing 1% FBS and incubated for 1 h at 37 °C with occa-
sional shaking. The inoculum was removed by aspiration and the monolayers were overlaid with MEM contain-
ing 4% FBS, 1% low-melting-point agarose and a cocktail of antibiotic–antimycotic solution (Gibco, Invitrogen 
Corporation, Grassland, NY, USA) containing penicillin, streptomycin, and amphotericin B (Sigma Aldrich, St. 
Louis, MO, USA). Plates were incubated at 37 °C for 18− 24 h until plaques became visible. To allow counting of 
the plaques, the cell monolayer was stained with crystal violet after fixing the cells with 10% PFA.

Protein extraction from brain tissue and neuroblastoma cell line. The brain tissues were thawed 
on ice and homogenized using Ultra-turrax T8 homogenizer (IKA-Werke GmbH & Co. KG, Germany) 
in solubilization buffer containing 8M urea, 2% (w/v) CHAPS (3-[(3-cholamidopropyl)dimethylammo-
nio]-1-propanesulfonate), 0.2% sodium orthovanadate and 1 ×  concentration of protease inhibitor cocktail 
(Sigma Aldrich, St. Louis, MO, USA). The supernatant was collected by centrifugation and subjected to three 
pulses of sonication on ice followed by centrifugation at 20,000 ×  g for 30 min at 4 °C for the recovery of total solu-
ble proteins. Protein extraction from Neuro2a cells was carried out in a similar manner. The rest of the extraction 
procedure was done according to ref. 51.

Mitochondrial protein extraction from neuroblastoma cell line. After the respective incubation periods as per 
the experiments, cells were harvested with the help of 1x PBS. From there on mitochondrial protein extraction 
was performed as per the manufacturer’s instruction. (Mitochondria Isolation Kit for Cultured Cells, Cat. 89874, 
ThermoFisher).

Nuclear protein extraction from neuroblastoma cell line. For nuclear extracts, Neuro2A cells were 
collected with 1X PBS and harvested by spinning at 2000 rpm for 5 min. The cells were resuspended in 400 μ l of 
cold buffer A (10 mM HEPES pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM DTT and 0.5 mM PMSF) 
(Sigma Aldrich, St. Louis, MO, USA) and then kept on ice for 15 min. 15 μ l of nonionic surfactant, IGEPAL CA 
630 (Sigma Aldrich, St. Louis, MO, USA) was then added and vortexed vigorously. The cells were then pelleted 
for 1 min at 10,000 g and the recovered pellet was re-suspended in 50 μ l of ice cold buffer B (20 mM HEPES pH 
7.9, 400 mM KCl and 1 mM EDTA) and subjected to gentle shaking for 15 min at 4 °C. The suspended cells in 
Buffer B were again pelleted at 4 °C and the supernatant having the nuclear protein was collected and estimated 
by bicinchoninic assay (BCA) method.

Two dimensional gel electrophoresis (2-DE). 2-DE was performed as described earlier. The protein 
pellet from the brain tissue (extraction procedure as mentioned above) was re-suspended in sample rehydration 
buffer (8 M urea, 2% w/v CHAPS, 15 mM DTT and 0.5% v/v IPG buffer pH 3–10). The iso-electric focusing was 
performed using immobilized pH gradient (IPG) strips (Bio-Rad, CA, USA). IPG strips of 7 cm size with a pH 
range from 5–8 were used for all the experiments. For the first dimension 500 μ g of protein samples in 150 μ l of 
rehydration solution was used to passively rehydrate IPG strips overnight. The proteins were then focused for 
10000 VHr at 20 °C under mineral oil on a Protean i12™  IEF Cell (Bio-Rad, CA, USA). After focusing, the strips 
were incubated for 10 min, in 2 ml of equilibration buffer I (6 M urea, 30% w/v glycerol, 2% w/v SDS and 1% w/v 
DTT in 50 mM Tris/HCl buffer, pH 8.8) followed by equilibration buffer II (6 M urea, 30% w/v glycerol, 2% w/v 
SDS and 4% w/v iodoacetamide in 375 mM Tris/HCl buffer, pH 8.8). After the equilibration steps the strips were 
transferred to 10% SDS-PAGE for the second dimension by the method of Blackshear52.
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Protein visualization and image analysis. Protein spots were visualized by staining with Coomassie 
Brilliant Blue G-250. Gel images were captured by LI-COR odyssey infra red imager (LI-COR Biosciences, 
NE, USA). Four biological replicates each with two analytical replicate (n =  8) images per dataset (mock 
infected versus CHPV infected) were used for automatic spot detection using the PD Quest 2D Analysis 
software (Bio-Rad, CA, USA). Spot intensities were normalized by total valid spot intensities and mean of 
values from duplicate analytical gels from four biological replicates were subjected to paired t-test analysis. 
Protein spots showing altered expression between mock and CHPV infected groups (|ratio| ≥  1.5, p ≥  0.05) 
were marked and excised.

Generation of peptides and their extraction from gel spots. The gel spots were washed in 50 mM 
NH4HCO3/acetonitrile (1:1) solution to remove the coomassie stain. Reduction of the protein in the gel pieces 
were performed by incubating them in 10 mM DTT (dissolved in 50 mM NH4HCO3 solution) for 45 min at 56 °C. 
Subsequent alkylation was done by incubating the gel pieces with 55 mM iodoacetamide (dissolved in 50 mM 
NH4HCO3 solution) for 30 minutes in the dark. The gel pieces were then incubated with 50–100 ng Trypsin over-
night at 37 °C. The peptides formed after digestion, were then extracted in Acetonitrile solution containing 0.1% 
Tri-Fluoro Acetic acid.

Mass spectrometric peptide analysis. MALDI-TOF (MALDI-Time of Flight) was performed using 
Bruker ultra flex extreme. The instrument parameters were set as follows: detector, reflector mode; accelerat-
ing voltage, 25 kV; delay time, 1 μ s; laser intensity, 2500. Acquisition was made in the range m/z 700–3500 Da.  
A total of 500 shots were performed per spectrum, and 20–25 spectra were accumulated per sample to increase 
the signal to noise ratio. Spectra were acquired in the positive ion mode. A volume of 2 μ L of digested sample 
was mixed with 2 μ L of saturated hydroxylcinnamic acid solution and from this mixture 1 μ L was deposited 
onto a stainless steel MALDI sample target and air-dried. Searches were performed against the SWISS PROT 
protein sequence database allowing for up to 100 ppm error tolerance and up to one missed trypsin cleavage 
site. The carbamido-methylation of cysteines and methionine oxidation were selected as variable modifications 
during the search. MS/MS process was done by using LIFT method. The MS & MS/MS spectra were combined 
& searched using MASCOT against SWISS PROT protein sequence database allowing for up to 0.1 ppm error 
tolerance.

Generation of meta-network. The 50 proteins identified through MALDI analysis were queried in the 
STRING 10.0 querying for 0 interacting partners (since we were looking for developing an interactome out of the 
50 identified proteins) as an output from the Mus musculus database. The STRING 10.0 software defines signif-
icance of the interactions between various queried proteins in terms of confidence score. This confidence score 
is an empirical score defined by the number of citations and experimental evidence for a particular interaction. 
The minimum (0.15) confidence score in the database was chosen in our case since we tried to obtain all possible 
interactions between the 50 nodes queried for building the network. Hence the edges that connect the nodes carry 
certain weightage score based on the confidence of the interaction. The deep blue shade corresponds to highest 
confidence and lighter shades of blue for lower confidence scores. The interactome was designed based on active 
prediction methods as neighbourhood, gene fusion, co-occurence and co-expression.

Graph theoretic analysis. The adjacency matrix for graph theoretic analysis was created from the interac-
tome as derived from the STRING 10.0 database. Visual Connectome analysis tool box in MATLAB was used to 
compute the modularity score and the degree centrality of all the nodes53.

Degree Centrality. Degree centrality is the property that defines the connectivity of particular node with 
other nodes of the same network. This means the higher number of connections of a particular node with other 
nodes in a network, higher is its degree centrality. The node with the highest degree centrality is the one through 
which maximum edges pass.
Degree centrality of a vertex v, for a given graph G =  (V, E) with |V| vertices and |E| edges is defined as Z(v) =  deg(v).

Modularity. Modularity score is used to measure the community structure within a network. The value of mod-
ularity ranges between [− 0.5, 1) with 0 and negative values meaning a network with randomly assigned edges to 
positive values indicating highly communal structure.

The detailed algorithm is mentioned in ref. 17.

Immunoblotting. Protein isolation from both tissue and cells were done as mentioned earlier. Primary anti-
bodies against DJ-1, LC3B (Abcam, MA, USA), SREBP-2 (Santa Cruz, CA, USA), CHPV P22 at 1:1000 and LDLR 
(Abcam, MA, USA) at 1: 500 dilutions, were used for studying the expression levels of respective proteins. The 
blots were processed for development using chemiluminescence reagent (Millipore, MA, USA). The images were 
captured and analyzed using Chemigenius Bioimaging System (Syngene, Cambridge, UK). To determine equiv-
alent loading of samples the blots were stripped and reprobed with β -Actin (Sigma Aldrich, USA) (whole cell), 
HSP60 (Abcam, MA USA) (mitochondria), PCNA (Cell Signalling, MA, USA) (nuclear).

Immunohistochemistry/cytochemistry. Immunohisto/cytochemistry was performed following pre-
vious published protocol35. Primary antibodies against neuronal marker NeuN (Chemicon, CA, USA), DJ-1 
(Abcam, MA, USA) at 1:500 and JEV Nakayama (Chemicon, CA, USA) at 1:100 dilutions, were used to check the 
expression levels of the respective proteins. For the Mito-tracker (a kind gift from Dr. Ellora Sen, NBRC) exper-
iment, cells were incubated with 500 nM of Mitotracker probe prepared in prewarmed (37 °C) serum free media 
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and incubated for 45 min at 37 °C. After incubation, staining media was replaced with fresh pre-warm PBS and 
fixed with PFA. In order to study the expression of DJ-1 and LC3B co-localization within mitochondria, fixed cells 
were probed with the required antibodies as per established protocol. Post staining sections were mounted with 
DAPI (Vector Laboratories Inc, CA, USA), observed under a Axio Observer.Z1 Fluorescence microscope (Carl 
Zeiss, Germany) and images were captured with AxioCam MRm. Image acquisition was done with Zen pro 2011. 
We used Adobe Photoshop 7.0 for adjusting the contrast and brightness of the images.

Quantitative PCR. Total cellular RNA from whole brain tissue and Neuro2A was extracted using Tri reagent 
(Sigma Aldrich, USA). cDNA synthesis was performed using advantage RT-PCR Kit (Clontech, Mountain view, 
USA) and run on a ABI Prism 7500 sequence detection system (Applied Biosystems, USA). Primers used are 
enlisted in Table 2. The results were normalized with GAPDH.

Measurement of reactive oxygen species (ROS). We examined the effects of CHPV and JEV on 
Neuro2A cells by determining the levels of ROS. Intracellular ROS generation in mock and virus infected cells 
was assessed using the cell permeable, non-polar hydrogen peroxide-sensitive dye 5-(and-6)-chlromethyl-2′ ,  
7′ -dichlorodihydrofluorescein diacetate (DCFDA) (Sigma Aldrich, MO, USA) and the mean fluorescent inten-
sities (MFIs) were measured on the FL-1 channel on a fluorescence-activated cell sorting (FACS) Calibur flow 
cytometer (Becton Dickinson, Franklin Lakes, NJ, USA) as described previously54.

Measurement of mitochondrial activity. We examined the effect of CHPV on Neuro2A mitochon-
dria in various phases of infection and in DJ-1 knockdown cells. The mitochondrial activity was measured 
using JC-1 staining (5,5′ ,6,6′ -tetrachloro-1,1′ ,3,3′ -tetraethylbenzimidazol-carbocyanine iodide) (a kind gift 
from Prof. S. K. Sharma and Prof. Pankaj Seth, NBRC). After the incubation period was over 2 μ M JC-1 was 
administered in the culture medium and cells were incubated for 15 min at 37 °C, 5% CO2. Cells were har-
vested with phosphate-buffered saline (PBS) and analyzed on a fluorescence-activated cell sorting (FACS) 
Calibur flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA) using 488 nm excitation with 530 nm 
and 585 nm bandpass emission filters. Cells were gated and analyzed using Cell Quest Pro software (Becton 
Dickinson, Franklin Lakes, NJ, USA). The details of the gatings applied are mentioned in the figure legends of  
corresponding images.

Luciferase Assay. Luciferase reporter gene constructs pLDLR-Luc mutSRE was a gift from Axel Nohturfft  
(Addgene plasmid # 14945)55 was used, containing human Sterol Regulatory Element (SRE) binding site promoter  
region of LDLR (− 335 to + 3 bp) cloned upstream of the luciferase reporter gene in the pGL2-basic vector.  
The SRE sequence had point mutation at ATCACCCCAC. Using primers: Forward- GGTGAAGACAT 
TTGAAAAT-CACCCCACTGCAAACTCC, Reverse- GGAGTTTGCAGTGGGGTGATTTTCAA 
A-TGTCTTCACC and Dpn1 (NEB, UK) mutation was performed to get the wild type sequence ATAACCCCAC 
(pLDLR-Luc SRE). Since the SRE binding site is conserved through human and mouse we transfected both 
pLDL-Luc mutSRE and pLDL-Luc SRE into Neuro2A cells separately and infected the cells with CHPV to check 
the luciferase activity56. The luciferase assay was carried out using the luciferase assay kit (Promega, USA) accord-
ing to the manufacturer’s protocol. The reading was taken using a Sirius single tube luminometer (Berthold 
Detection Systems GmBH, Germany). The luciferase units were measured as relative luciferase units and these 
values represented as fold change with respect to pGL2-basic vector (taken as control) reading.

MitoSOX Red Staining. Mitophagy was determined using fluorescent dye MitoSOX Red Mitochondrial 
Superoxide Indicator (Life Technologies-Invitrogen). Briefly, cells were seeded in 35 mm culture and infected 
with CHPV. After the incubation period was over plates were incubated with 2 μM MitoSOX for 20 min. Images 
of fluorescently labeled cells were captured by inverted fluorescence microscope (Nikon Eclipse Ti-S, Japan), 
using a Rhodamine filter. Absorbance was measured at absorption/emission maxima: ~510/580 nm in Sirius 
single tube luminometer (Berthold Detection Systems GmBH, Germany).

Statistical Analysis. Data were compared between groups using paired t-test using GrapPad Prism 6 soft-
ware. All data were considered to be statistically significant if p value <  0.05 represented as *and highly significant 
if p value <  0.01 represented as #.

Gene Name Forward Sequence Reverse Sequence

DJ-1 TTTATCTGAGTCGCCTATGG CTCTCTGAGTAGCTGTAGTG

SOD-1 CACTCTAAGAAACATGGTGG GATCACACGATCTTCAATGG

IFN-α ATT GGC TAG GCT CTG TGC TTT AGG GCT CTC CAG ACT TCT GC

IFN-β TTG CCA TCC AAG AGA TGC TC TCA GAA ACA CTG TCT GCT GG

CHPV P 
Protein CACAGCTTGGAACCTTCTCC TGACCGGGTTGAGGATTGGC

JEV GP78 TTG ACA ATC ATG GCA AAC G CCC AAC TTG CGC TGA ATA A

LDLR CGGCCCTGGCAGTTCTGTGG CGCGGATCTGATGCGTCGCC

Table 2.  Primer List.
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