2,342 research outputs found

    Relating transverse structure of various parton distributions

    Full text link
    We present the results of T-even TMDs in a light front quark-diquark model of nucleons with the wave functions constructed from the soft-wall AdS/QCD prediction. The relations amongst TMDs are discussed. The pp_\perp dependence of the TMDs are compared with the tt-dependence of the GPDs. AdS/QCD wave function provides an explanation behind the approximate xx and pp_\perp factorization observed in lattice TMD calculations.Comment: 11 pages, 8 figures, modified extensively, added new results and discusssion

    Controlling Metamaterial Resonances with Light

    Full text link
    We investigate the use of coherent optical fields as a means of dynamically controlling the resonant behaviour of a variety of composite metamaterials, wherein the metamaterial structures are embedded in a dispersive dielectric medium. Control and switching is implemented by coherently driving the resonant permittivity of the embedding medium by applied optical radiation. The effect of embedding Split ring resonators (SRR) in a frequency- dispersive medium with Lorentz-like dispersion or with dispersion engineered by electromagnetic induced transparency (EIT), is manifested in the splitting of the negative permeability band, the modified (frequency-dependent) filling fractions and dissipation factors. The modified material parameters are strongly linked to the resonant frequencies of the medium, while for an embedding medium exhibiting EIT, also to the strength and detuning of the control field. The robustness of control against the deleterious influence of dissipation associated with the metallic structures as well as the inhomogeneous broadening due to structural imperfections is demonstrated. Studies on plasmonic metamaterials that consist of metallic nanorods arranged in loops and exhibit a collective magnetic response at optical frequencies are presented. Control and switching in this class of plasmonic nanorod metamaterials is shown to be possible, for example, by embedding these arrays in a Raman active liquid like CS2_2 and utilizing the Inverse Raman Effect.Comment: 9 pages, 9 figure

    Influence of the structural modulations and the Chain-ladder interaction in the Sr_14xCa_xCu_24O_41Sr\_{14-x}Ca\_{x}Cu\_{24}O\_{41} compounds

    Full text link
    We studied the effects of the incommensurate structural modulations on the ladder subsystem of the Sr_14xCa_xCu_24O_41Sr\_{14-x}Ca\_{x}Cu\_{24}O\_{41} family of compounds using ab-initio explicitly-correlated calculations. From these calculations we derived tJt-J model as a function of the fourth crystallographic coordinate τ\tau describing the incommensurate modulations. It was found that in the highly calcium-doped system, the on-site orbital energies are strongly modulated along the ladder legs. On the contrary the two sites of the ladder rungs are iso-energetic and the holes are thus expected to be delocalized on the rungs. Chain-ladder interactions were also evaluated and found to be very negligible. The ladder superconductivity model for these systems is discussed in the light of the present results.Comment: 8 octobre 200

    Plausible home stars of the interstellar object 'Oumuamua found in Gaia DR2

    Full text link
    The first detected interstellar object 'Oumuamua that passed within 0.25au of the Sun on 2017 September 9 was presumably ejected from a stellar system. We use its newly determined non-Keplerian trajectory together with the reconstructed Galactic orbits of 7 million stars from Gaia DR2 to identify past close encounters. Such an "encounter" could reveal the home system from which 'Oumuamua was ejected. The closest encounter, at 0.60pc (0.53-0.67pc, 90% confidence interval), was with the M2.5 dwarf HIP 3757 at a relative velocity of 24.7km/s, 1Myr ago. A more distant encounter (1.6pc) but with a lower encounter (ejection) velocity of 10.7km/s was with the G5 dwarf HD 292249, 3.8Myr ago. Two more stars have encounter distances and velocities intermediate to these. The encounter parameters are similar across six different non-gravitational trajectories for 'Oumuamua. Ejection of 'Oumuamua by scattering from a giant planet in one of the systems is plausible, but requires a rather unlikely configuration to achieve the high velocities found. A binary star system is more likely to produce the observed velocities. None of the four home candidates have published exoplanets or are known to be binaries. Given that the 7 million stars in Gaia DR2 with 6D phase space information is just a small fraction of all stars for which we can eventually reconstruct orbits, it is a priori unlikely that our current search would find 'Oumuamua's home star system. As 'Oumuamua is expected to pass within 1pc of about 20 stars and brown dwarfs every Myr, the plausibility of a home system depends also on an appropriate (low) encounter velocity.Comment: Accepted to The Astronomical Journa

    Regularly alternating spin-1/2 anisotropic XY chains: The ground-state and thermodynamic properties

    Full text link
    Using the Jordan-Wigner transformation and continued fractions we calculate rigorously the thermodynamic quantities for the spin-1/2 transverse Ising chain with periodically varying intersite interactions and/or on-site fields. We consider in detail the properties of the chains having a period of the transverse field modulation equal to 3. The regularly alternating transverse Ising chain exhibits several quantum phase transition points, where the number of transition points for a given period of alternation strongly depends on the specific set of the Hamiltonian parameters. The critical behavior in most cases is the same as for the uniform chain. However, for certain sets of the Hamiltonian parameters the critical behavior may be changed and weak singularities in the ground-state quantities appear. Due to the regular alternation of the Hamiltonian parameters the transverse Ising chain may exhibit plateau-like steps in the zero-temperature dependence of the transverse magnetization vs. transverse field and many-peak temperature profiles of the specific heat. We compare the ground-state properties of regularly alternating transverse Ising and transverse XX chains and of regularly alternating quantum and classical chains. Making use of the corresponding unitary transformations we extend the elaborated approach to the study of thermodynamics of regularly alternating spin-1/2 anisotropic XY chains without field. We use the exact expression for the ground-state energy of such a chain of period 2 to discuss how the exchange interaction anisotropy destroys the spin-Peierls dimerized phase

    An Improved Interactive Streaming Algorithm for the Distinct Elements Problem

    Full text link
    The exact computation of the number of distinct elements (frequency moment F0F_0) is a fundamental problem in the study of data streaming algorithms. We denote the length of the stream by nn where each symbol is drawn from a universe of size mm. While it is well known that the moments F0,F1,F2F_0,F_1,F_2 can be approximated by efficient streaming algorithms, it is easy to see that exact computation of F0,F2F_0,F_2 requires space Ω(m)\Omega(m). In previous work, Cormode et al. therefore considered a model where the data stream is also processed by a powerful helper, who provides an interactive proof of the result. They gave such protocols with a polylogarithmic number of rounds of communication between helper and verifier for all functions in NC. This number of rounds (O(log2m)  in the case of  F0)\left(O(\log^2 m) \;\text{in the case of} \;F_0 \right) can quickly make such protocols impractical. Cormode et al. also gave a protocol with logm+1\log m +1 rounds for the exact computation of F0F_0 where the space complexity is O(logmlogn+log2m)O\left(\log m \log n+\log^2 m\right) but the total communication O(nlogm(logn+logm))O\left(\sqrt{n}\log m\left(\log n+ \log m \right)\right). They managed to give logm\log m round protocols with polylog(m,n)\operatorname{polylog}(m,n) complexity for many other interesting problems including F2F_2, Inner product, and Range-sum, but computing F0F_0 exactly with polylogarithmic space and communication and O(logm)O(\log m) rounds remained open. In this work, we give a streaming interactive protocol with logm\log m rounds for exact computation of F0F_0 using O(logm(logn+logmloglogm))O\left(\log m \left(\,\log n + \log m \log\log m\,\right)\right) bits of space and the communication is O(logm(logn+log3m(loglogm)2))O\left( \log m \left(\,\log n +\log^3 m (\log\log m)^2 \,\right)\right). The update time of the verifier per symbol received is O(log2m)O(\log^2 m).Comment: Submitted to ICALP 201

    Generalized pseudo-Newtonian potential for studying accretion disk dynamics in off-equatorial planes around rotating black holes: Description of a vector potential

    Full text link
    We prescribe a pseudo-Newtonian vector potential for studying accretion disks around Kerr black holes. The potential is useful to study the inner properties of disk not confined to the equatorial plane where general relativistic effect is indispensable. Therefore, we incorporate the essential properties of the metric at the inner radii through the pseudo-Newtonian potential derived from the general Kerr spacetime. The potential, reproducing most of the salient features of the general-relativity, is valid for entire regime of Kerr parameter. It reproduces the last stable circular orbit exactly as that in the Kerr geometry. It also reproduces last bound orbit and energy at last stable circular orbit with a maximum error ~7% and ~15% respectively upto an orbital inclination 30 degree.Comment: 22 AASTeX pages including 5 postscript figures; Accepted for publication in The Astrophysical Journa
    corecore