26 research outputs found

    MEGA: merger graphs of structure formation

    Get PDF
    When following the growth of structure in the Universe, we propose replacing merger trees with merger graphs, in which haloes can both merge and split into separate pieces. We show that this leads to smoother mass growth and eliminates catastrophic failures in which massive haloes have no progenitors or descendants. For those who prefer to stick with merger trees, we find that trees derived from our merger graphs have similar mass growth properties to previous methods, but again without catastrophic failures. For future galaxy formation modelling, two different density thresholds can be used to distinguish host haloes (extended galactic haloes, groups and clusters) from higher-density subhaloes: sites of galaxy formation

    Nonlinear Bias of Cosmological Halo Formation in the Early Universe

    Get PDF
    We present estimates of the nonlinear bias of cosmological halo formation, spanning a wide range in the halo mass from 105M\sim 10^{5} M_\odot to 1012M\sim 10^{12} M_\odot, based upon both a suite of high-resolution cosmological N-body simulations and theoretical predictions. The halo bias is expressed in terms of the mean bias and stochasticity as a function of local overdensity (δ\delta), under different filtering scales, which is realized as the density of individual cells in uniform grids. The sampled overdensities span a range wide enough to provide the fully nonlinear bias effect on the formation of haloes. A strong correlation between δ\delta and halo population overdensity δh\delta_h is found, along with sizable stochasticity. We find that the empirical mean halo bias matches, with good accuracy, the prediction by the peak-background split method based on the excursion set formalism, as long as the empirical, globally-averaged halo mass function is used. Consequently, this bias formalism is insensitive to uncertainties caused by varying halo identification schemes, and can be applied generically. We also find that the probability distribution function of biased halo numbers has wider distribution than the pure Poisson shot noise, which is attributed to the sub-cell scale halo correlation. We explicitly calculate this correlation function and show that both overdense and underdense regions have positive correlation, leading to stochasticity larger than the Poisson shot noise in the range of haloes and halo-collapse epochs we study.Comment: 18 pages, 8 figures, in press for publication in MNRAS; supplementary material (additional 16 figures) separately supplied (supplement.pdf) as a part of source file

    L-galaxies 2020: Spatially resolved cold gas phases, star formation and chemical enrichment in galactic discs

    Get PDF
    © 2023 Oxford University Press. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stz3233We have updated the Munich galaxy formation model, L-Galaxies, to follow the radial distributions of stars and atomic and molecular gas in galaxy discs. We include an H2-based star-formation law, as well as a detailed chemical-enrichment model with explicit mass-dependent delay times for SN-II, SN-Ia and AGB stars. Information about the star formation, feedback and chemical-enrichment histories of discs is stored in 12 concentric rings. The new model retains the success of its predecessor in reproducing the observed evolution of the galaxy population, in particular, stellar mass functions and passive fractions over the redshift range 0Peer reviewe

    L-GALAXIES 2020: spatially resolved cold gas phases, star formation and chemical enrichment in galactic discs

    Get PDF
    We have updated the Munich galaxy formation model, L-galaxies, to follow the radial distributions of stars and atomic and molecular gas in galaxy discs. We include an H2-based star-formation law, as well as a detailed chemical-enrichment model with explicit mass-dependent delay times for SN-II, SN-Ia, and AGB stars. Information about the star formation, feedback, and chemical-enrichment histories of discs is stored in 12 concentric rings. The new model retains the success of its predecessor in reproducing the observed evolution of the galaxy population, in particular, stellar mass functions and passive fractions over the redshift range 0 ≤ z ≤ 3 and mass range 8≤log(M∗/M⊙)≤12⁠, the black hole-bulge mass relation at z = 0, galaxy morphology as a function of stellar mass and the mass–metallicity relations of both stellar and gas components. In addition, its detailed modelling of the radial structure of discs allows qualitatively new comparisons with observation, most notably with the relative sizes and masses of the stellar, atomic, and molecular components in discs. Good agreement is found with recent data. Comparison of results obtained for simulations differing in mass resolution by more than two orders of magnitude shows that all important distributions are numerically well converged even for this more detailed model. An examination of metallicity and surface-density gradients in the stars and gas indicates that our new model, with star formation, chemical enrichment, and feedback calculated self-consistently on local disc scales, reproduces some but not all of the trends seen in recent many-galaxy IFU surveys

    Sussing merger trees: a proposed merger tree data format

    Get PDF
    We propose a common terminology for use in describing both temporal merger trees and spatial structure trees for dark-matter halos. We specify a unified data format in HDF5 and provide example I/O routines in C, FORTRAN and PYTHON

    Major mergers going Notts: challenges for modern halo finders

    Get PDF
    Merging haloes with similar masses (i.e. major mergers) pose significant challenges for halo finders. We compare five halo-finding algorithms’ (ahf, hbt, rockstar, subfind, and velociraptor) recovery of halo properties for both isolated and cosmological major mergers. We find that halo positions and velocities are often robust, but mass biases exist for every technique. The algorithms also show strong disagreement in the prevalence and duration of major mergers, especially at high redshifts (z > 1). This raises significant uncertainties for theoretical models that require major mergers for, e.g. galaxy morphology changes, size changes, or black hole growth, as well as for finding Bullet Cluster analogues. All finders not using temporal information also show host halo and subhalo relationship swaps over successive timesteps, requiring careful merger tree construction to avoid problematic mass accretion histories. We suggest that future algorithms should combine phase-space and temporal information to avoid the issues presented

    Sussing merger trees: the influence of the halo finder

    Get PDF
    Merger tree codes are routinely used to follow the growth and merger of dark matter haloes in simulations of cosmic structure formation. Whereas in Srisawat et. al. we compared the trees built using a wide variety of such codes, here we study the influence of the underlying halo catalogue upon the resulting trees. We observe that the specifics of halo finding itself greatly influences the constructed merger trees. We find that the choices made to define the halo mass are of prime importance. For instance, amongst many potential options different finders select self-bound objects or spherical regions of defined overdensity, decide whether or not to include substructures within the mass returned and vary in their initial particle selection. The impact of these decisions is seen in tree length (the period of time a particularly halo can be traced back through the simulation), branching ratio (essentially the merger rate of subhaloes) and mass evolution. We therefore conclude that the choice of the underlying halo finder is more relevant to the process of building merger trees than the tree builder itself. We also report on some built-in features of specific merger tree codes that (sometimes) help to improve the quality of the merger trees produced

    Sussing merger trees: the Merger Trees Comparison Project

    Get PDF
    Merger trees follow the growth and merger of dark-matter haloes over cosmic history. As well as giving important insights into the growth of cosmic structure in their own right, they provide an essential backbone to semi-analytic models of galaxy formation. This paper is the first in a series to arise from the Sussing Merger Trees Workshop in which 10 different tree-building algorithms were applied to the same set of halo catalogues and their results compared. Although many of these codes were similar in nature, all algorithms produced distinct results. Our main conclusions are that a useful merger-tree code should possess the following features: (i) the use of particle IDs to match haloes between snapshots; (ii) the ability to skip at least one, and preferably more, snapshots in order to recover subhaloes that are temporarily lost during merging; (iii) the ability to cope with (and ideally smooth out) large, temporary fluctuations in halo mass. Finally, to enable different groups to communicate effectively, we defined a common terminology that we used when discussing merger trees and we encourage others to adopt the same language. We also specified a minimal output format to record the results

    Sussing merger trees: stability and convergence

    Get PDF
    Merger trees are routinely used to follow the growth and merging history of dark matter haloes and subhaloes in simulations of cosmic structure formation. Srisawat et al. compared a wide range of merger-tree-building codes. Here we test the influence of output strategies and mass resolution on tree-building. We find that, somewhat surprisingly, building the tree from more snapshots does not generally produce more complete trees; instead, it tends to shorten them. Significant improvements are seen for patching schemes that attempt to bridge over occasional dropouts in the underlying halo catalogues or schemes that combine the halo-finding and tree-building steps seamlessly. The adopted output strategy does not affect the average number of branches (bushiness) of the resultant merger trees. However, mass resolution has an influence on both main branch length and the bushiness. As the resolution increases, a halo with the same mass can be traced back further in time and will encounter more small progenitors during its evolutionary history. Given these results, we recommend that, for simulations intended as precursors for galaxy formation models where of the order of 100 or more snapshots are analysed, the tree-building routine should be integrated with the halo finder, or at the very least be able to patch over multiple adjacent snapshots
    corecore