10,522 research outputs found
High voltage v-groove solar cell
A high voltage multijunction solar cell comprises a number of discrete voltage generating regions, or unit cells, which are formed in a single semiconductor wafer and are connected together so that the voltages of the individual cells are additive. The unit cells comprise doped regions of opposite conductivity types separated by a gap. The method includes forming V-shaped grooves in the wafer and orienting the wafer so that ions of one conductivity type can be implanted in one face of the groove while the other face is shielded. A metallization layer is applied and selectively etched away to provide connections between the unit cells
Method of making a high voltage V-groove solar cell
A method is provided for making a high voltage multijunction solar cell. The cell comprises a plurality of discrete voltage generating regions, or unit cells, which are formed in a single semiconductor wafer and are connected together so that the voltages of the individual cells are additive. The unit cells comprise doped regions of opposite conductivity types separated by a gap. The method includes forming V-shaped grooves in the wafer and thereafter orienting the wafer so that ions of one conductivity type can be implanted in one face of the groove while the other face is shielded. A metallization layer is applied and selectively etched away to provide connections between the unit cells
High voltage planar multijunction solar cell
A high voltage multijunction solar cell is provided wherein a plurality of discrete voltage generating regions or unit cells are formed in a single generally planar semiconductor body. The unit cells are comprised of doped regions of opposite conductivity type separated by a gap or undiffused region. Metal contacts connect adjacent cells together in series so that the output voltages of the individual cells are additive. In some embodiments, doped field regions separated by a overlie the unit cells but the cells may be formed in both faces of the wafer
Screen printed interdigitated back contact solar cell
Interdigitated back contact solar cells are made by screen printing dopant materials onto the back surface of a semiconductor substrate in a pair of interdigitated patterns. These dopant materials are then diffused into the substrate to form junctions having configurations corresponding to these patterns. Contacts having configurations which match the patterns are then applied over the junctions
Surface temperature distribution along a thin liquid layer due to thermocapillary convection
The surface temperature distributions due to thermocapillary convections in a thin liquid layer with heat fluxes imposed on the free surface were investigated. The nondimensional analysis predicts that, when convection is important, the characteristics length scale in the flow direction L, and the characteristic temperature difference delta T sub o can be represented by L and delta T sub o approx. (A2Ma)/1/4 delta T sub R, respectively, where L sub R and delta sub R are the reference scales used in the conduction dominant situations with A denoting the aspect ratio and Ma the Marangoni number. Having L and delta sub o defined, the global surface temperature gradient delta sub o/L, the global thermocapillary driving force, and other interesting features can be determined. Numerical calculations involving a Gaussian heat flux distribution are presented to justify these two relations
Planar multijunction high voltage solar cells
Technical considerations, preliminary results, and fabrication details are discussed for a family of high-voltage planar multi-junction (PMJ) solar cells which combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators
Directed polymers in random media under confining force
The scaling behavior of a directed polymer in a two-dimensional (2D) random
potential under confining force is investigated. The energy of a polymer with
configuration is given by H\big(\{y(x)\}\big) = \sum_{x=1}^N \exyx
+ \epsilon \Wa^\alpha, where is an uncorrelated random potential
and \Wa is the width of the polymer. Using an energy argument, it is
conjectured that the radius of gyration and the energy fluctuation
of the polymer of length in the ground state increase as
and respectively with and for . A
novel algorithm of finding the exact ground state, with the effective time
complexity of \cO(N^3), is introduced and used to confirm the conjecture
numerically.Comment: 9 pages, 7 figure
Kinetic Monte Carlo Simulations of Crystal Growth in Ferroelectric Alloys
The growth rates and chemical ordering of ferroelectric alloys are studied
with kinetic Monte Carlo (KMC) simulations using an electrostatic model with
long-range Coulomb interactions, as a function of temperature, chemical
composition, and substrate orientation. Crystal growth is characterized by
thermodynamic processes involving adsorption and evaporation, with
solid-on-solid restrictions and excluding diffusion. A KMC algorithm is
formulated to simulate this model efficiently in the presence of long-range
interactions. Simulations were carried out on Ba(Mg_{1/3}Nb_{2/3})O_3 (BMN)
type materials. Compared to the simple rocksalt ordered structures, ordered BMN
grows only at very low temperatures and only under finely tuned conditions. For
materials with tetravalent compositions, such as (1-x)Ba(Mg_{1/3}Nb_{2/3})O_3 +
xBaZrO_3 (BMN-BZ), the model does not incorporate tetravalent ions at
low-temperature, exhibiting a phase-separated ground state instead. At higher
temperatures, tetravalent ions can be incorporated, but the resulting crystals
show no chemical ordering in the absence of diffusive mechanisms.Comment: 13 pages, 16 postscript figures, submitted to Physics Review B
Journa
Theory and design of InGaAsBi mid-infrared semiconductor lasers: type-I quantum wells for emission beyond 3 m on InP substrates
We present a theoretical analysis and optimisation of the properties and
performance of mid-infrared semiconductor lasers based on the dilute bismide
alloy InGaAsBi, grown on conventional (001) InP
substrates. The ability to independently vary the epitaxial strain and emission
wavelength in this quaternary alloy provides significant scope for band
structure engineering. Our calculations demonstrate that structures based on
compressively strained InGaAsBi quantum wells (QWs)
can readily achieve emission wavelengths in the 3 -- 5 m range, and that
these QWs have large type-I band offsets. As such, these structures have the
potential to overcome a number of limitations commonly associated with this
application-rich but technologically challenging wavelength range. By
considering structures having (i) fixed QW thickness and variable strain, and
(ii) fixed strain and variable QW thickness, we quantify key trends in the
properties and performance as functions of the alloy composition, structural
properties, and emission wavelength, and on this basis identify routes towards
the realisation of optimised devices for practical applications. Our analysis
suggests that simple laser structures -- incorporating
InGaAsBi QWs and unstrained ternary
InGaAs barriers -- which are compatible with established
epitaxial growth, provide a route to realising InP-based mid-infrared diode
lasers.Comment: Submitted versio
Renormalization group approach to an Abelian sandpile model on planar lattices
One important step in the renormalization group (RG) approach to a lattice
sandpile model is the exact enumeration of all possible toppling processes of
sandpile dynamics inside a cell for RG transformations. Here we propose a
computer algorithm to carry out such exact enumeration for cells of planar
lattices in RG approach to Bak-Tang-Wiesenfeld sandpile model [Phys. Rev. Lett.
{\bf 59}, 381 (1987)] and consider both the reduced-high RG equations proposed
by Pietronero, Vespignani, and Zapperi (PVZ) [Phys. Rev. Lett. {\bf 72}, 1690
(1994)] and the real-height RG equations proposed by Ivashkevich [Phys. Rev.
Lett. {\bf 76}, 3368 (1996)]. Using this algorithm we are able to carry out RG
transformations more quickly with large cell size, e.g. cell for
the square (sq) lattice in PVZ RG equations, which is the largest cell size at
the present, and find some mistakes in a previous paper [Phys. Rev. E {\bf 51},
1711 (1995)]. For sq and plane triangular (pt) lattices, we obtain the only
attractive fixed point for each lattice and calculate the avalanche exponent
and the dynamical exponent . Our results suggest that the increase of
the cell size in the PVZ RG transformation does not lead to more accurate
results. The implication of such result is discussed.Comment: 29 pages, 6 figure
- …
