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SUMMARY

The surface temperature distributions due to thermocapillary convections
in a thin liquid layer with heat fluxes imposed on the free surface are inves-

tigated. The nondimensional analysis predicts that, when convection is
important, the characteristic length scale in the flow direction L, and the
characteristic temperature difference AT OP can be represented by

L — (A2Ma) 1/4 LR and &TO — (A2Ma)-1/4aTR, respectively, where LR and ATR

are the reference scales used in the conduction-dominant situations with A
denoting the aspect ratio and Ma the Marangoni number. Having had L and

aTO defined, the global surface-temperature gradient (aTO /L), the global

thermocapillary driving-force, and other interesting features can then be
readily determined. Finally, numerical calculations involving a Gaussian heat
flux d i stribution are presented to justify these two relations.

INTRODUCTION

The availability of a low-gravity environment aboard a spacecraft opens
new possibilities for the growth of better quality crystals. Among various

techniques used for crystal growth, containerless processes such as the

floating-zone method seem to have a very great potential to benefit from the

space environment.

in the floating-zone method, a nonuniform heat flux imposed along the free
surface of the melt may induce a thermocapillary flow in the melt if the sur-
face is reasonably free from contamination. Chang and Wilcox (1975, 1976)
investigated floating-zone problems numerically by assuming a vertical cylin-
drical melt with planar solid-liquid interfaces. Clark and Wilcox (1980) later
pointed out and corrected certain errors in Chang and Wilcox's numerical formu-
lation. the main feature of the numerical work is the prediction of flow cells
(toroidal vortices) that extend through the entire fluid. Unfortunately, these
numerical studies were limited to cases with small Marangoni numbers (1 to 10)
which are too small to simulate actual situations, which are typically on the

order of magnitude of greater than 102.

In order to simplify the analysis, most of the studies in the past dealt
with the flow phenomena in a half-zone configuration (Chun, 1980a - Lai, 1984;
Ostrach, Kamotani, and Lai, 1985; Preisser, Sct,3rmann, and Schwabe, 1981 -
Schwabe and coworkers, 1978; Vargas, Ostrach, and Kamotani, 1982). In these
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models a liquid bridge is suspended vertically between two circular rods with
a higher temperature at the upper rod and a lower temperature at the bottom
one. Several investigators have also studied the flow phenomena in a two-
dimensional slot with different temperatures specified on the side walls (Lai,
1984; Sen and Davis, 1982; Strani, Piva and Graziani, 1983). The thermocapil-
lary convections in a two-dimensional thin liquid layer with specified surface

temperature distributions were also studied in the past (Lai, 1984; Pimputka
and Ostrach, 1980; Smith and Davis, 1983a, 1983b). However, the coupling among

the flow field, the temperature field and the imposed heat flux was not taken
into consideration. In order to demonstrate certain feats: es due to such a

coupling, a simple model is being proposed in this investigation.

The proposed model is essentially a two-dimensional thin liquid layer with
a nonuniform heat flux imposed on the free surface. It differs from those in

the past studies in that convection is considered to be of primary importance

in the present model. Consequently, the coupling effect mentioned above can
no longer be ignored. Among several important and interesting features of tho
thermocapillary flows, the surface temperature distribution is one of the most
critical factors because it determines the driving force of the thermocapillary
flows. In contrast to the conduction-dominant situations, the surface temper-
ature distribution due to thermocapillary convection in a thin liquid layer
with a nonuniform heat flux imposed on the free surface is determined by the

coupling among the flow field, the temperature field and the imposed heat flux.
The surface temperature distribution itself is a part of the solution. Con-
sequently, any estimation of the global surface-temperature gradient based on
the information derived from the conduction-dominant situations will be inap-

propriate. Without the correct information about the global surface tempera-
ture distribution, a proper estimation of the driving force and, hence, other
informatiun about the thermocapillary flow cannot be obtained. Furthermore,

for a two-dimensional thermocapillary convection experiment, if the dimension
in the flow direction is not designed large enough, sharp surface temperature
variations in the corner regions near the lower temperature side walls will
exist. This sharp surface temperature variation will bring about strong shear

stresses in corner regions, which, under certain circumstances, may induce
unsteady flows. Lowry (1980) experimentally studied a similar problem using a

two-dimensional container with a horizontal heating element located symmetric-
ally above the free surface of the fluid sample. The velocity and temperature
distributions were measured for several different cases, but the relationship
between the surface temperature distribution and the coupling was not taken
into consideration. As a result there has been no guidance for modeling or

designing an experiment to avoid sharp surface-temperature variations which are

known to exist in the corner regions near the Lowe- temperature side walls.

The present study is aimed at resolving all these deficiencies.

Dimensional analysis with proper balancing between physical quantities is
employed initially to obtain appropriate dimensionless parameters. Based on
these parameters, the characteristic temperature difference along the free
surface AT o and the characteristic length scale in the flow direction L

can be determined. Having had these two quantities defined, the global
surface-temperature gradient ATo/L, the global driving force, and other

interesting features such as the characteristic velocity can be realistically
assessed. A numerical calculation is used to verify the validity of the param-
eters obtained in the first part of the present study. Hopefully, this effort
will leid to a better understanding of certain important and interesting fea-
tures of thermocapillary flows.
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MATHEMATICAL FORMULATION AND DIMENSIONAL ANALYSIS

As a result of the coupling among the flow field, the temperature field,
and the imposed heat flux, the surface temperature becomes a part of the solu-
tion itself when convection becomes important. The purpose of this section is
to obtain a proper estimation of such a surface temperature distribution.

The schematic diagram of the configuration and the applied coordinate
system of the present study are shown in figure 1. The problem considered
herein is a steady, two-dimensional thermocapillary convection in a thin liquid

layer (i.e., inertia effects are negligible) with nonuniform heat fluxes
imposed on the free surface. For simplicity, but without losing the general-

ity, a Gaussian-distributive heat flux is considered in the present study. The
bottom boundary is kept at the lower ambient temperature. Under the thin layer
configuration, buoyancy force is negligibly small compared to the thermocapil-
lary driving-force. The dimensionless governing equations and boundary condi-
tions are as follows:
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where (u,v) is the dimensionless velocity vector, p is the dimensionless
pressure, a is the dimensionless temperature difference, A is the aspect
ratio, and Ma is the Marangoni number. In the above formulation, the free
surface is assumed to be flat, and the heat loss from the free surface is
neglected. In addition, the following nondimensionalization scheme has been
employed:

D ja
T IeT R 	D2	 10T jeT R 	10TjeTR

	

x^L R , Y^ D , u^^	 ^	 v— z  	 P^	
D	

^ e — eTR
	R 	 LR

3

. a



where V denotes the dynamic viscosity, oT is the surface-tension gradient
with respect to temperature T, D is the layer depth, LR is the character-

istic length scale of the imposed heat flux. Let fo be the amplitude of
the Gaussian-distributive heat flux and k be the thermal conductivity. Then
eT R = fo0/k gives the referenced temperature difference. It is derived

from the energy boundary condition at the free-surface by assuming conduction
as dominant.

Ti.e dimensionless parameters involved are

aspect ratio A - 
0

R

DloT1eTR

Marangoni number Ma =
Na

where a is the thermal diffusivity. When convection becomes important, that
is, when (A2Ma) >> 1, LR and eTR are no longer the proper characteristic
quantities because they are derived under conduction dominant conditions. The
global surface-temperature gradient based on the ratio of these two quantities,

eTR/L R , becomes therefore incorrect. To obtain appropriate estimations of
a proper length scale L and a proper characteristic temperature difference

eTo in terms of LR, eTR, and A 2Ma, the following argument is made.

In the steady state, L and eTo can be properly determined from the

global energy-balance condition (i.e., the energy input from the imposed heat
flux should be equated to the energy output by conduction through the oottom

wall) and the local energy boundary condition at the center point (0,1) of the

free surface, where the temperature reaches its maximum value. The global

energy-balance condition indicates that
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The expression k(ATo/0) has been used above to estimate the global heat flux
through the bottom wall. This implies that, in the steady state, convection
should finally be balanced by conduction across the entire layer. Otherwise,

convection will keep heating up the liquid in the downstream until the flow
field eventually reaches the steady state. But at the central position, where
the thermal boundary layer has not been developed to the full layer depth, the
use of D as the characteristic length scale for the conduction in
y-direction will be improper. The local energy boundary condition at the
center point of the free surface (eq. (6)) indicates that

(9)
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where dT denotes the thermal boundary layer thickness at the central pos-

ition, which is obtained by balancing conduction and convection in the
y-direction at that position. Let
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and V  - L Uo

be the cnaracteriscic velocities in the x- and y- directions, respectively,
when convection becomes important, and A* - 0/L and Ma* _ (UoL/ a), the
corresponding modified aspect ratio and Marangoni number; then, by the balance
between convection and conduction in the y-direction at the central position,

D	 D

(DV*
T	

0/cL)	 A*2Ma*

Therefore,

AT
0

f ° 	k (D/A*2Ma*)
. I

and (using eq. (9))
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CLL / (A2 
Ma )

R	 1^

and

'	 4
(^R l - A2Ma

Now we have the following two relations:

L - (A2 Ma) 1/4LR

5

(11)



r:..

_°'^'T Vireo

and

AT  — 
( A2Ma ) -1/4 AT R 	

(12)

Equatio ; (11) and (12) indicate that L is directly proportional to (A2Ma)1/4

and eTo is inversely proportional to (A 2Ma) 1/4 when convection is important.
These two relations also indicate that as convection becomes more and more

dominant, that is, when the value of A 2Ma becomes larger. more heat gets
transported downstream by thermocapillary convection. As a result of this, the
characteristic temperature difference is reduced to a smaller portion of ATR.

These two relations are shown in figure 2 and will be verified in the next
section when numerical calculations are presented.

A further remark should be made with regard to the values of A*2Ma*.
Combining equation (10) with equation (11) or (12) yields

A* 2Ma* — (A2Ma)1/4

This implies that, in the steady-state, although the convection should finally
be balanced by the conduction in a thin liquid layer as discussed earlier, it

is inadequate to require A* 2Ma* — 1. The ;jnusual result is due to the
deceleration of the surface velocity in thermocapillary flows (i.e., from
Uo to zero at a far downstream point of the flow field), which allows the

thermal boundary layer to grow faster than expected.

NUMERICAL CALCULATIONS

In the thin liquid layer analysis, as the velocity field is coupled with

the temperature field only through the shear-stress boundary condition at the
free surface (eq. (5)), the momentum equation (eq. (2)) can be solved first.

The solutions of u(x,y) and v(x,y) are

u ( x , Y) =- 
d es 4 y 

2- 2 Y
and
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v(x,Y) = 
1	 2 (Y 3 - Y2)

dx

where es(x) is the dimensionless surface-temperature distribution. The

expressions of u and v also satisfy the continuity equation. The energy
equation (eq '4)) becomes, after substituting the above expressions for u

and v,
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Because of the local nonlinearity (i.e., the existence of [(des/dx)(ae/ax)]

and [(d 2es /dx 2 )(8e/ay)] in the convection terms), it is still very difficult

to obtain the analytical solution of 9(x,y). In this section, a finite dif-
ference numerical scheme is employed to calculate the temperature distributions

o(x,y) for different values of A Ma.

Instead of solving the steady state equation, a time dependent term is
included for the time marching procedure. The equation to be solved becomes

ae	 2	 des 3 2	 1	 ae	 l d 
2 
es	 3	 2 ae	 a 

2 
e

at*A Ma 
-dx	 4 y -2y ax*4dX2 ( y - y ) ay -ay2

The main features of the numerical scheme employed in the present study can be
outlined as fellows:

(1) Central differences are used for both the first and second derivatives
except at the boundaries where suitable boundary conditions are incorporated.

(2) Because of the modest variations, the grid spacing for the numerical
calculation are chosen to be 0.1 in both xand y-directions.

(3) Depending on the magnitude of A 2Ma, proper time intervals are
chosen for the time marching procedures so that stable numerical calculations

can be obtained.

(4) To determine the steady-state, a proper criterion c is used for the
temperature difference calculated at two time steps. The criterion depends on

the magnitude of A2Ma and the global energy balance between the imposed
heat flux and the heat conduction through the bottom wall (to be within -10-2

difference). As an example, the criterion c used for the case with A2Ma
. 104 is -10- 3 for two calculations at one-thousand time steps apart.

(S) In order to reduce the computation time, the domain of calculation is
increased successively when appropriate. That is, when the temperature at the

last grid point reaches 0.002, another ten more grid points at the downstream
are then added to the calculation domain until the temperature field finally

reaches the steady-state. The initial domain used for calculation is 30 grid
spaces in the x-direction (i.e., up to x - 3) and 10 grid spaces in the
y-direction (i.e., up to y - 1, the free surface).

Since the detailed temperature distributions of the whole flow field are
not of interest to the present study, only the surface temperature distribu-

tions for various situations dre recorded and plotted in order to verify the
theoretical predictions made in the previous section. The surface temperature
distributions for various values of A 2Ma are shown in figure 3. It car be
seen that as the convection become more important, that is, as the value of

A2Ma increases, the extent of the surface temperature distribution becomes
larger. Consequently, the dimensionless tempera,`.ure difference at the central

position decreases, that is, the characteristic temperature difference ATo
becomes a smaller portion of the referenced temperai re difference ATR.
These two behaviors had been predicted by nondimensionzl inalysis discussed in

the previous section. The relations of the characteristic length scale L
and the characteristic temperature difference ATo versus A2Ma are
shown in logarithmic scales in figure 2. Although the numerical calculations



of the characteristic temperature difference do not appear to coincide with the
theoretical line, they are within the same order of magnitude. In the non-

dimensional analysis with order-of-magnitude estimates, the power law is of

primary concern. It can be seen from figure 2 that both the theoretical
predictions and the numerical calculations follow the same trends. This

confirms the validity of equations (11) and (12).

SUMMARY AND CONCLUSIONS

The thermocapillary convection in a liquid phase with a nonuniform heat
flux imposed on the free surface is a vt ry practical and important problem
related to the floating-zone crystal growth. For simplicity, a two-dimensional
thin liquid layer is employed herein to ioves •tigate the effect on surface
temperature distribution due to the coupling among the flow field, the temper-
ature field and the imposed heat flux. The following conclusions are drawn
from the analysis made in the present study:

1. Dimensional analysis and the numerical calculations indicate that for
thermocapillary convection flow in a thin layer configuration. the following
two relations are valid:

L - (A2 Ma) 1/4LR

and

AT  - (A2Ma)-1/4ATR

With L and ATo determined, the global surface-temperature gradient, the

thermocapillary driving force and other important information such as the
characteristic velocity can be assessed properly.

2. With the above two relations, proper experimental designs for the
investigation of the thermocapillary convections can be made to avoid the sharp
surface-temperature variations in the corner regions near side walls. Effects
due to string shear stresses in corner regions near the side walls can then be
reasonably eliminated in such a configuration and if an unsteady, oscillatory
motion is found, it can be attributed to coupling among t'.e flow field, the
temperature field and the imposed heat flux.
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