41 research outputs found

    Development of deactivation of the default-mode network during episodic memory formation

    Get PDF
    Task-induced deactivation of the default-mode network (DMN) has been associated in adults with successful episodic memory formation, possibly as a mechanism to focus allocation of mental resources for successful encoding of external stimuli. We investigated developmental changes of deactivation of the DMN (posterior cingulate, medial prefrontal, and bilateral lateral parietal cortices) during episodic memory formation in children, adolescents, and young adults (ages 8–24), who studied scenes during functional magnetic resonance imaging (fMRI). Recognition memory improved with age. We defined DMN regions of interest from a different sample of participants with the same age range, using resting-state fMRI. In adults, there was greater deactivation of the DMN for scenes that were later remembered than scenes that were later forgotten. In children, deactivation of the default-network did not differ reliably between scenes that were later remembered or forgotten. Adolescents exhibited a pattern of activation intermediate to that of children and adults. The hippocampal region, often considered part of the DMN, showed a functional dissociation with the rest of the DMN by exhibiting increased activation for later remembered than later forgotten scene that was similar across age groups. These findings suggest that development of memory ability from childhood through adulthood may involve increased deactivation of the neocortical DMN during learning

    Altered Intrinsic Functional Brain Architecture in Children at Familial Risk of Major Depression

    Get PDF
    Background Neuroimaging studies of patients with major depression have revealed abnormal intrinsic functional connectivity measured during the resting state in multiple distributed networks. However, it is unclear whether these findings reflect the state of major depression or reflect trait neurobiological underpinnings of risk for major depression. Methods We compared resting-state functional connectivity, measured with functional magnetic resonance imaging, between unaffected children of parents who had documented histories of major depression (at-risk, n = 27; 8–14 years of age) and age-matched children of parents with no lifetime history of depression (control subjects, n = 16). Results At-risk children exhibited hyperconnectivity between the default mode network and subgenual anterior cingulate cortex/orbital frontal cortex, and the magnitude of connectivity positively correlated with individual symptom scores. At-risk children also exhibited 1) hypoconnectivity within the cognitive control network, which also lacked the typical anticorrelation with the default mode network; 2) hypoconnectivity between left dorsolateral prefrontal cortex and subgenual anterior cingulate cortex; and 3) hyperconnectivity between the right amygdala and right inferior frontal gyrus, a key region for top-down modulation of emotion. Classification between at-risk children and control subjects based on resting-state connectivity yielded high accuracy with high sensitivity and specificity that was superior to clinical rating scales. Conclusions Children at familial risk for depression exhibited atypical functional connectivity in the default mode, cognitive control, and affective networks. Such task-independent functional brain measures of risk for depression in children could be used to promote early intervention to reduce the likelihood of developing depression

    The mammalian LINC complex component SUN1 regulates muscle regeneration by modulating drosha activity.

    Get PDF
    Here we show that a major muscle specific isoform of the murine LINC complex protein SUN1 is required for efficient muscle regeneration. The nucleoplasmic domain of the isoform specifically binds to and inhibits Drosha, a key component of the microprocessor complex required for miRNA synthesis. Comparison of the miRNA profiles between wildtype and SUN1 null myotubes identified a cluster of miRNAs encoded by a non-translated retrotransposon-like one antisense (Rtl1as) transcript that are decreased in the WT myoblasts due to SUN1 inhibition of Drosha. One of these miRNAs miR-127 inhibits the translation of the Rtl1 sense transcript, that encodes the retrotransposon-like one protein (RTL1), which is also required for muscle regeneration and is expressed in regenerating/dystrophic muscle. The LINC complex may therefore regulate gene expression during muscle regeneration by controlling miRNA processing. This provides new insights into the molecular pathology underlying muscular dystrophies and how the LINC complex may regulate mechanosignaling

    Loss of ARHGEF6 Causes Hair Cell Stereocilia Deficits and Hearing Loss in Mice

    Get PDF
    ARHGEF6 belongs to the family of guanine nucleotide exchange factors (GEFs) for Rho GTPases, and it specifically activates Rho GTPases CDC42 and RAC1. Arhgef6 is the X-linked intellectual disability gene also known as XLID46, and clinical features of patients carrying Arhgef6 mutations include intellectual disability and, in some cases, sensorineural hearing loss. Rho GTPases act as molecular switches in many cellular processes. Their activities are regulated by binding or hydrolysis of GTP, which is facilitated by GEFs and GTPase-activating proteins, respectively. RAC1 and CDC42 have been shown to play important roles in hair cell (HC) stereocilia development. However, the role of ARHGEF6 in inner ear development and hearing function has not yet been investigated. Here, we found that ARHGEF6 is expressed in mouse cochlear HCs, including the HC stereocilia. We established Arhgef6 knockdown mice using the clustered regularly interspaced short palindromic repeat-associated Cas9 nuclease (CRISPR-Cas9) genome editing technique. We showed that ARHGEF6 was indispensable for the maintenance of outer hair cell (OHC) stereocilia, and loss of ARHGEF6 in mice caused HC stereocilia deficits that eventually led to progressive HC loss and hearing loss. However, the loss of ARHGEF6 did not affect the synapse density and did not affect the mechanoelectrical transduction currents in OHCs at postnatal day 3. At the molecular level, the levels of active CDC42 and RAC1 were dramatically decreased in the Arhgef6 knockdown mice, suggesting that ARHGEF6 regulates stereocilia maintenance through RAC1/CDC42

    Digit Ratio Predicts Sense of Direction in Women

    Get PDF
    The relative length of the second-to-fourth digits (2D:4D) has been linked with prenatal androgen in humans. The 2D:4D is sexually dimorphic, with lower values in males than females, and appears to correlate with diverse measures of behavior. However, the relationship between digit ratio and cognition, and spatial cognition in particular, has produced mixed results. In the present study, we hypothesized that spatial tasks separating cue conditions that either favored female or male strategies would examine this structure-function correlation with greater precision. Previous work suggests that males are better in the use of directional cues than females. In the present study, participants learned a target location in a virtual landscape environment, in conditions that contained either all directional (i.e., distant or compass bearing) cues, or all positional (i.e., local, small objects) cues. After a short delay, participants navigated back to the target location from a novel starting location. Males had higher accuracy in initial search direction than females in environments with all directional cues. Lower digit ratio was correlated with higher accuracy of initial search direction in females in environments with all directional cues. Mental rotation scores did not correlate with digit ratio in either males or females. These results demonstrate for the first time that a sex difference in the use of directional cues, i.e., the sense of direction, is associated with more male-like digit ratio.National Science Foundation (U.S.) (NSF ECCS-1028319)National Science Foundation (U.S.) (NSF Graduate Student Fellowship)Mary Elisabeth Rennie Endowment for Epilepsy Researc

    Correlation of digit ratio with virtual navigation initial heading error in females.

    No full text
    <p>Correlation of digit ratio with virtual navigation initial heading error in females.</p
    corecore