11,553 research outputs found

    High voltage planar multijunction solar cell

    Get PDF
    A high voltage multijunction solar cell is provided wherein a plurality of discrete voltage generating regions or unit cells are formed in a single generally planar semiconductor body. The unit cells are comprised of doped regions of opposite conductivity type separated by a gap or undiffused region. Metal contacts connect adjacent cells together in series so that the output voltages of the individual cells are additive. In some embodiments, doped field regions separated by a overlie the unit cells but the cells may be formed in both faces of the wafer

    Method of making a high voltage V-groove solar cell

    Get PDF
    A method is provided for making a high voltage multijunction solar cell. The cell comprises a plurality of discrete voltage generating regions, or unit cells, which are formed in a single semiconductor wafer and are connected together so that the voltages of the individual cells are additive. The unit cells comprise doped regions of opposite conductivity types separated by a gap. The method includes forming V-shaped grooves in the wafer and thereafter orienting the wafer so that ions of one conductivity type can be implanted in one face of the groove while the other face is shielded. A metallization layer is applied and selectively etched away to provide connections between the unit cells

    High voltage v-groove solar cell

    Get PDF
    A high voltage multijunction solar cell comprises a number of discrete voltage generating regions, or unit cells, which are formed in a single semiconductor wafer and are connected together so that the voltages of the individual cells are additive. The unit cells comprise doped regions of opposite conductivity types separated by a gap. The method includes forming V-shaped grooves in the wafer and orienting the wafer so that ions of one conductivity type can be implanted in one face of the groove while the other face is shielded. A metallization layer is applied and selectively etched away to provide connections between the unit cells

    Observation of Damage Growth in Compressively Loaded Laminates

    Get PDF
    An experimental program to determine tie phenomenological aspects of composite-panel failure under simultaneous compressive n-plane loading and low-velocity transverse impact [C-75 m/s (0-250 ft/s)] is described. High-speed photography coupled with the shadow-moiré technique is used to record the phenomenon of failure propagation. The information gained from these records, supplemented by plate sectioning and observation for interior damage, has provided information regarding the failure-propagation mechanism. The results show that the failure process can be divided roughly into two phases. In the first phase the plane is impacted, and the resulting response causes interlaminar separation. In the second phase the local damage spreads to the undamaged portion of the plate through a combination of laminae buckling and further delamination

    Surface temperature distribution along a thin liquid layer due to thermocapillary convection

    Get PDF
    The surface temperature distributions due to thermocapillary convections in a thin liquid layer with heat fluxes imposed on the free surface were investigated. The nondimensional analysis predicts that, when convection is important, the characteristics length scale in the flow direction L, and the characteristic temperature difference delta T sub o can be represented by L and delta T sub o approx. (A2Ma)/1/4 delta T sub R, respectively, where L sub R and delta sub R are the reference scales used in the conduction dominant situations with A denoting the aspect ratio and Ma the Marangoni number. Having L and delta sub o defined, the global surface temperature gradient delta sub o/L, the global thermocapillary driving force, and other interesting features can be determined. Numerical calculations involving a Gaussian heat flux distribution are presented to justify these two relations

    Multivariable Repetitive-predictive Controllers using Frequency Decomposition

    No full text
    Repetitive control is a methodology for the tracking of a periodic reference signal. This paper develops a new approach to repetitive control systems design using receding horizon control with frequency decomposition of the reference signal. Moreover, design and implementation issues for this form of repetitive predictive control are investigated from the perspectives of controller complexity and the effects of measurement noise. The analysis is supported by a simulation study on a multi-input multi-output robot arm where the model has been constructed from measured frequency response data, and experimental results from application to an industrial AC motor

    Planar multijunction high voltage solar cells

    Get PDF
    Technical considerations, preliminary results, and fabrication details are discussed for a family of high-voltage planar multi-junction (PMJ) solar cells which combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators

    Screen printed interdigitated back contact solar cell

    Get PDF
    Interdigitated back contact solar cells are made by screen printing dopant materials onto the back surface of a semiconductor substrate in a pair of interdigitated patterns. These dopant materials are then diffused into the substrate to form junctions having configurations corresponding to these patterns. Contacts having configurations which match the patterns are then applied over the junctions

    Economic reforms and inequality in China

    Full text link
    This paper investigates the theoretical relationship between economic reforms and inequalities in socialist countries and tests it empirically in the case of China. The paper argues that the issue of whether market oriented reforms are likely to increase or decrease inequality in the former socialist economies is an empirical question which cannot be settled by a priori reasoning. On the one hand, economic inequality may rise with the reintroduction of property income and incentive payments and the reduction of barriers to opportunity for labor and capital to fully realize their highest earning potentials, On the other hand, inequality may decline with the decentralization of property rights, information and the reduction of barriers to the movement of goods and productive factors. The Chinese experience shows that economic inequalities did not increase but decline slightly during the first stage of the reforms. But they rose during the second stage of the reforms. Hence, the Chinese experience is largely congruent with the Szelenyi-Manchin hypothesis
    corecore