31 research outputs found

    The Role of MeCP2 in Brain Development and Neurodevelopmental Disorders

    Get PDF
    Methyl CpG binding protein-2 (MeCP2) is an essential epigenetic regulator in human brain development. Rett syndrome, the primary disorder caused by mutations in the X-linked MECP2 gene, is characterized by a period of cognitive decline and development of hand stereotypies and seizures following an apparently normal early infancy. In addition, MECP2 mutations and duplications are observed in a spectrum of neurodevelopmental disorders, including severe neonatal encephalopathy, X-linked mental retardation, and autism, implicating MeCP2 as an essential regulator of postnatal brain development. In this review, we compare the mutation types and inheritance patterns of the human disorders associated with MECP2. In addition, we summarize the current understanding of MeCP2 as a central epigenetic regulator of activity-dependent synaptic maturation. As MeCP2 occupies a central role in the pathogenesis of multiple neurodevelopmental disorders, continued investigation into MeCP2 function and regulatory pathways may show promise for developing broad-spectrum therapies

    Caracterização das habilidades funcionais na síndrome de Rett

    Get PDF
    O objetivo deste estudo foi identificar as áreas de maior comprometimento nas habilidades funcionais na síndrome de Rett (SR). Foram avaliadas 64 pacientes que preenchiam os critérios para a forma clássica da doença, com idade entre 2 e 26 anos. Foi aplicado o Inventário de avaliação pediátrica de incapacidade (PEDI) que contém 197 itens nas áreas de autocuidado, mobilidade e função social. Dentre as 73 atividades da área de autocuidado, 52 (71,2%) não foram realizadas por qualquer paciente; na mobilidade, dentre as 59 atividades propostas, 8 (13,5%); e na área de função social, dentre as 65 atividades, 50 (76,9%) não foram realizadas por paciente alguma. O desempenho médio ajustado em escala de 0 a 100 para a área de autocuidado foi de 8,9/100, variando de 0 a 19; na área de mobilidade, foi de 30,2/100, variando de 1 a 44; e na de função social, 5,2/100, com variação de 0 a 14. Foi possível verificar fortes correlações entre a área de autocuidado e as de mobilidade e função social; no entanto, entre as áreas de mobilidade e função social não foi detectada correlação significativa. Infelizmente, devido à gravidade da síndrome, o menor comprometimento da mobilidade, comparado ao das áreas de autocuidado e função social, não traz vantagens adaptativas ou maior independência às pacientes com SR.The purpose of this study was to determine the areas of greater impairment in functional abilities of patients with Rett syndrome. Sixty-four patients aged 2 to 26 years old, who filled out criteria for the classic form of the disease, were assessed by the Pediatric Evaluation of Disability Inventory (PEDI) of which 197 items are grouped in the areas of self-care, mobility, and social function. From the 73 activities in self-care area, 52 (71.2%) were not accomplished by any patient; in mobility area, among the 59 proposed activities, 8 (13.5%); and in social function area, from 65 activities, 50 (76.9%) could not be accomplished. Adjusted mean results in a 0-to-100 scale were: self-care, 8.9/100, varying from 0 to 19; mobility, 30.2/100, varying from 1 to 44; and social function, 5.2/100, varying from 0 to 14. Strong correlations were found between self-care area and mobility and social function areas, but no significant correlation between the latter. Unfortunately, due to the serious impairment of the disease, the fact that mobility is affected to a lesser degree, as compared to self-care and social function, does not bring Rett syndrome patients any adaptive advantage nor greater independence

    Partial Loss of Ataxin-1 Function Contributes to Transcriptional Dysregulation in Spinocerebellar Ataxia Type 1 Pathogenesis

    Get PDF
    Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a CAG repeat that encodes a polyglutamine tract in ATAXIN1 (ATXN1). Molecular and genetic data indicate that SCA1 is mainly caused by a gain-of-function mechanism. However, deletion of wild-type ATXN1 enhances SCA1 pathogenesis, whereas increased levels of an evolutionarily conserved paralog of ATXN1, Ataxin 1-Like, ameliorate it. These data suggest that a partial loss of ATXN1 function contributes to SCA1. To address this possibility, we set out to determine if the SCA1 disease model (Atxn1154Q/+ mice) and the loss of Atxn1 function model (Atxn1−/− mice) share molecular changes that could potentially contribute to SCA1 pathogenesis. To identify transcriptional changes that might result from loss of function of ATXN1 in SCA1, we performed gene expression microarray studies on cerebellar RNA from Atxn1−/− and Atxn1154Q/+ cerebella and uncovered shared gene expression changes. We further show that mild overexpression of Ataxin-1-Like rescues several of the molecular and behavioral defects in Atxn1−/− mice. These results support a model in which Ataxin 1-Like overexpression represses SCA1 pathogenesis by compensating for a partial loss of function of Atxn1. Altogether, these data provide evidence that partial loss of Atxn1 function contributes to SCA1 pathogenesis and raise the possibility that loss-of-function mechanisms contribute to other dominantly inherited neurodegenerative diseases

    Synaptic Maturation at Cortical Projections to the Lateral Amygdala in a Mouse Model of Rett Syndrome

    Get PDF
    Rett syndrome (RTT) is a neuro-developmental disorder caused by loss of function of Mecp2 - methyl-CpG-binding protein 2 - an epigenetic factor controlling DNA transcription. In mice, removal of Mecp2 in the forebrain recapitulates most of behavioral deficits found in global Mecp2 deficient mice, including amygdala-related hyper-anxiety and lack of social interaction, pointing a role of Mecp2 in emotional learning. Yet very little is known about the establishment and maintenance of synaptic function in the adult amygdala and the role of Mecp2 in these processes. Here, we performed a longitudinal examination of synaptic properties at excitatory projections to principal cells of the lateral nucleus of the amygdala (LA) in Mecp2 mutant mice and their wild-type littermates. We first show that during animal life, Cortico-LA projections switch from a tonic to a phasic mode, whereas Thalamo-LA synapses are phasic at all ages. In parallel, we observed a specific elimination of Cortico-LA synapses and a decrease in their ability of generating presynaptic long term potentiation. In absence of Mecp2, both synaptic maturation and synaptic elimination were exaggerated albeit still specific to cortical projections. Surprisingly, associative LTP was unaffected at Mecp2 deficient synapses suggesting that synaptic maintenance rather than activity-dependent synaptic learning may be causal in RTT physiopathology. Finally, because the timing of synaptic evolution was preserved, we propose that some of the developmental effects of Mecp2 may be exerted within an endogenous program and restricted to synapses which maturate during animal life

    The short-time structural plasticity of dendritic spines is altered in a model of Rett syndrome

    Get PDF
    The maturation of excitatory transmission comes about through a developmental period in which dendritic spines are highly motile and their number, form and size are rapidly changing. Surprisingly, although these processes are crucial for the formation of cortical circuitry, little is known about possible alterations of these processes in brain disease. By means of acute in vivo 2-photon imaging we show that the dynamic properties of dendritic spines of layer V cortical neurons are deeply affected in a mouse model of Rett syndrome (RTT) at a time around P25 when the neuronal phenotype of the disease is still mild. Then, we show that 24h after a subcutaneous injection of IGF-1 spine dynamics is restored. Our study demonstrates that spine dynamics in RTT mice is severely impaired early during development and suggest that treatments for RTT should be started very early in order to reestablish a normal period of spine plasticity

    Foxp2 controls synaptic wiring of corticostriatal circuits and vocal communication by opposing Mef2c

    Get PDF
    Cortico-basal ganglia circuits are critical for speech and language and are implicated in autism spectrum disorder, in which language function can be severely affected. We demonstrate that in the mouse striatum, the gene Foxp2 negatively interacts with the synapse suppressor gene Mef2c. We present causal evidence that Mef2c inhibition by Foxp2 in neonatal mouse striatum controls synaptogenesis of corticostriatal inputs and vocalization in neonates. Mef2c suppresses corticostriatal synapse formation and striatal spinogenesis, but can itself be repressed by Foxp2 through direct DNA binding. Foxp2 deletion de-represses Mef2c, and both intrastriatal and global decrease of Mef2c rescue vocalization and striatal spinogenesis defects of Foxp2-deletion mutants. These findings suggest that Foxp2-Mef2C signaling is critical to corticostriatal circuit formation. If found in humans, such signaling defects could contribute to a range of neurologic and neuropsychiatric disorders.National Institutes of Health (U.S.) (Grant R37 HD028341)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Award R37 HD028341

    Epigenetic understanding of gene-environment interactions in psychiatric disorders: a new concept of clinical genetics

    Get PDF
    Epigenetics is a mechanism that regulates gene expression independently of the underlying DNA sequence, relying instead on the chemical modification of DNA and histone proteins. Although environmental and genetic factors were thought to be independently associated with disorders, several recent lines of evidence suggest that epigenetics bridges these two factors. Epigenetic gene regulation is essential for normal development, thus defects in epigenetics cause various rare congenital diseases. Because epigenetics is a reversible system that can be affected by various environmental factors, such as drugs, nutrition, and mental stress, the epigenetic disorders also include common diseases induced by environmental factors. In this review, we discuss the nature of epigenetic disorders, particularly psychiatric disorders, on the basis of recent findings: 1) susceptibility of the conditions to environmental factors, 2) treatment by taking advantage of their reversible nature, and 3) transgenerational inheritance of epigenetic changes, that is, acquired adaptive epigenetic changes that are passed on to offspring. These recently discovered aspects of epigenetics provide a new concept of clinical genetics

    Expression Profiling of Autism Candidate Genes during Human Brain Development Implicates Central Immune Signaling Pathways

    Get PDF
    The Autism Spectrum Disorders (ASD) represent a clinically heterogeneous set of conditions with strong hereditary components. Despite substantial efforts to uncover the genetic basis of ASD, the genomic etiology appears complex and a clear understanding of the molecular mechanisms underlying Autism remains elusive. We hypothesized that focusing gene interaction networks on ASD-implicated genes that are highly expressed in the developing brain may reveal core mechanisms that are otherwise obscured by the genomic heterogeneity of the disorder. Here we report an in silico study of the gene expression profile from ASD-implicated genes in the unaffected developing human brain. By implementing a biologically relevant approach, we identified a subset of highly expressed ASD-candidate genes from which interactome networks were derived. Strikingly, immune signaling through NFκB, Tnf, and Jnk was central to ASD networks at multiple levels of our analysis, and cell-type specific expression suggested glia—in addition to neurons—deserve consideration. This work provides integrated genomic evidence that ASD-implicated genes may converge on central cytokine signaling pathways
    corecore